「6歳から64歳までのハイリスク者に対する肺炎球菌ワクチン接種の考え方」

第3版

(2025年4月9日)

<目次>

Executive Summary

はじめに

- 1. 小児および成人の肺炎球菌の血清型分布の動向について
- 2. 小児および成人におけるハイリスク者について
- 3. 慢性心疾患
- 4. 慢性肺疾患
- 5. 慢性腎臟病
- 6. 慢性肝疾患
- 7. 糖尿病
- 8. 自己免疫性疾患
- 9. 悪性腫瘍・臓器移植後
- 10. 免疫不全(主に小児)

おわりに

本稿で使用した略語

PPSV23: 23-valent pneumococcal polysaccharide vaccine (23 価肺炎球菌莢膜多糖体ワクチン)

PCV13: 13-valent pneumococcal conjugate vaccine (13 価結合型肺炎球菌ワクチン)

PCV15: 15-valent pneumococcal conjugate vaccine (15 価結合型肺炎球菌ワクチン)

PCV20: 20-valent pneumococcal conjugate vaccine (20 価結合型肺炎球菌ワクチン)

IPD: invasive pneumococcal disease (侵襲性肺炎球菌感染症)

OPA: opsonophagocytic activity (オプソニン活性)

RCT: randomized controlled trial (ランダム化比較試験)

ACIP: Advisory Committee on Immunization Practices

RR: relative risk (相対リスク)

OR: odds ratio (オッズ比)

HR: hazard ratio (ハザード比)

CI: confidence interval (信頼区間)

IRR: incident rate ratio (罹患率比)

Executive Summary

- わが国では23価肺炎球菌莢膜多糖体ワクチン(PPSV23)、15価結合型肺炎球菌ワクチン(PCV15)に次いで、2024年8月に20価結合型肺炎球菌ワクチン(PCV20)が高齢者と64歳未満のハイリスク者に対して薬事承認された。
- 2023 年の成人侵襲性肺炎球菌感染症 (IPD) 原因菌の血清型分布は、PCV15 血清型が 30%、PCV20 血清型と PPSV23 血清型がいずれも 45%であった。
- ・ わが国の感染症発生動向調査における IPD の報告数は 5 歳未満と 65 歳以上に多いが、 $5\sim64$ 歳の年齢層も全体の 25.0%を占めており、IPD 患者のうち基礎疾患を有する者の 割合は $6\sim14$ 歳で 42.7%、 $15\sim64$ 歳では 57.7%であった。
- ・ IPD 患者の主な基礎疾患は、6~14 歳では血液・腫瘍性疾患、神経疾患、髄液漏・人工 内耳、先天性免疫不全症候群、染色体異常、15~64 歳では糖尿病、自己免疫性疾患、ス テロイド薬投与、慢性肝疾患、治療中の固形癌、免疫抑制薬投与、脾摘後、先天性無脾 / 脾低形成、造血幹細胞移植後、慢性腎臓病、慢性心疾患等であった。
- ・ <u>50~64</u>歳における肺炎を含む肺炎球菌感染症の罹患率は、19~49歳よりも約5倍高く、 基礎疾患は慢性肺疾患、慢性肝疾患、慢性心疾患、糖尿病、がんが多かった。
- ・ 6 歳から 64 歳においても肺炎球菌感染症のハイリスク者では肺炎球菌ワクチンによる 予防が重要である。

基礎疾患ごとの病態の特徴、肺炎球菌感染症の発生リスク、ワクチンの免疫原性、予防効果、接種推奨の要点を次ページの表1にまとめた。

表 1 基礎疾患ごとの肺炎球菌感染症のリスクとワクチンの効果

基礎疾患	病態の特徴	肺炎球菌感染症 の発症頻度と予 後	ワクチンの免疫 原性	ワクチンの予防 効果	接種推奨の要点
慢性心疾患	心拡大に伴うに伴うに伴うに伴うに 管支換気には物ででは るからのでは がでいる。 がでいる。 は は は は は は は は は は は は は り は は り は り	19 歳以上の慢性心疾患患者でIPDのリスクは2.6~4.7 倍、肺炎球菌性肺炎のリスクは7.1~15.7 倍高い(日本)	慢性心疾患患者 を含む 18~49 歳 へ の PCV13/15 と PPSV23 の連続 接種で IgG と OPA が上する(海外)。 心血管疾患患者 を含む 18~64 歳で PCV20 接 種後 OPA が増 加する(海外)。	18 歳以上の市中肺炎患者ホートが、 PPSV23 接種症 PPSV23 接種症 群では急性変が HR 0.46 と低下する (海外)。 心血管疾患患者の全死亡率は、 PCV13/PPSV2 3 接種群で 22% 減少する (海外)。	PPSV23 単語 種がは が症の となり がない を を を を を を を を を を を を を を を を を を を
慢性肺疾患	気スい炎量疫れド薬っ疫ていり、症増のる薬等で低い。火症増のる薬等で低い。水症増のる薬等で低い。が、炎量疫れド薬の全下るが、変しのでは、変更のできないがでは、変更のではなりでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のではなりでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のではなりでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のでは、変更のではなりでは、変更のでは、変更のではなりではなりでは、変更のではなりではなりではなりではなりではなりでは、変更なりではなりではなりではなりではなりではなりではなりではなりではなりではなりでは	慢性肺疾患患者のIPD罹患患率 6.5 (日、50~64 歳で 6.5 (日、50~64 歳 倍 で 12.9~21.4 倍 所 炎の肺炎の間がで 5.6 (本 8.2 倍 、50~64 歳 で 6.8~12.8 倍 高い(日本)。	40 歳以上 PPSV 23 の免疫と PPSV 23 の免疫さ方め、 PCV7 向認のに が解するに が解する。 18~49 患患を PCV13/PCV15 と PPSV23 の血 と PPSV23 の血 を IgG の PCV13/PCV15 と PPSV23 の血 を A の	COPD 息を対象とで、PPSV23による 65歳未満防効った (海外) インフルエン で (本) アPSV23/PCV1 3連続 関係 で (本) で (重症例を含者と 性肺にて PPSV23 接種 を 推問 所 を を 推問 所 を PCV20 単 を PCV20 単 を PCV20 単 を PCV20 単 を PCV20 単元 を PCV15 と PPSV 23 の連続接択 を である。
慢性腎臓 病 (CKD)	B リCD4 場別では、 リンプリアリアリアリアリアのでは、 リンパン激性のらりである。 が、陽減球対下能機があるのである。 球性少のす、低染いは。 は、抗る好下症。さ	ネ群や CKD により	血 血 か で で び 後 と す の に り の の の の の の の の の の の の の	血液を	PCV20 単回接 種 ま た は PCV15とPPSV 23 の連続接種 を推奨する。

基礎疾患	病態の特徴	肺炎球菌感染症 の発症頻度と予 後	ワクチンの免疫 原性	ワクチンの予防 効果	接種推奨の要点
慢性肝疾患	肝じ露高備る患変能パな低疫に応れ症いは微受なた、こは低合肝に当たが血とは微受なた、こは低合肝に当たが血といれでを腹慢と網下成臓加細っ障症り脈物る疫器性に内、ののえ胞でで・りをのた能で肝肝系タ低機、全免害敗やをのたのをあ疾硬機ン下能免般疫さ血す通曝めをあ疾硬機ン下能免般疫さ血す	慢性PD49 64 4.1 で球患歳~ 4.1 倍、50~64 歳炎罹 9.0 倍 11.9 位	ア硬て糖種体外肝Pし価後イる回外ルで 14 72 上 植 し植べで再る 上 はにンが復いに莢チ後昇 植 し植べで再る 上 をたらー低接 し が。移抗かス下種(前接抗かス下種(前接抗かる下種(慢性肝疾患患者 を対球菌の果とした。 を対象を の子は い。	慢性 PCV20 種 B を PCV15 PPSV23 の討ま はに PPSV23 検望 者態た をが も が も 制状る単た PCV20 種 また。 PCV20 をが はにめ回 をが と PCV20 をが と をが は をが と をが は をが と をが は をが と をが は をが と をが また。 をが また。 とが また。 をが また。 とが
糖尿病	高中ァ下能神障にるでイイ性糖化高中ァ下能神障にるでイイ性糖化地球一、や経害関。はトンががしたマ機管固害易っ症炎イリ強悪すいを機管固害易っ症炎イリ強悪すらロの皮常栄染て染性等抵高重。がフ低機、養性い症サで抗血症	18 歳以上の糖 尿病思力は1.8~3.5 倍素のは1.8~3.5 倍素が、 原本のは、 原本のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、	13 人の 用	観察研究、の PCV 接種所ででは非、の PEV 接種にいる。 接種にいる。 要種には、 P接には、 P接には、 P接には、 P接には血炎のでは、 P接には、 P接には、 P接には、 P接には、 P接には、 Pをは、 Pをは、 Pをは、 Pをは、 Pをは、 Pをは、 Pをは、 Pを	 PCV15 PPSV23 PPSV23 PPSV23 中でいるのでは、 中でいるできるのでは、 中でいるできるできるできるできるできるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできます。 中でいるできるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできます。 中でいるできるできるできます。 中でいるできるできるできます。 中でいるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできるできるできます。 中でいるできるできるできるできるできます。 中でいるできるできるできるできるできるできます。 中でいるできるできるできるできます。 中でいるできるできるできるできるできます。 中でいるできるできるできるできるできます。 中でいるできるできるできるできるできるできるできるできるできるできるできるできるできる
自己免疫性疾患	疾異スメト(MTX) 自にロトイン 自にロトイン のえドキー、、 が関薬制め症い。 のえ、 リカー リカー リカー リカー リカー リカー リカー リカー リカー リカー	IPD の発症率は SLE で 13 倍高かった (オランダ)。 肺炎球患性 下 (IRR) は は (IRR) サウマチ (RA) で 4.4、 SLE 4.3 と高 (米国)。	PPSV23 PCV13 の 免量ス 原性は等 原性は等 下、TNF に 大が、 大が、 大が、 大が、 大が、 大が、 大が、 大が、 大が、 大が、	MTX 投与のRA 場子によい PPSV23 非接種には、PPSV23 非接種に対対 MTX 技術では、 PPSV23 非接種に対対 MTX 技術では、 MTX が	Republication Republicatio

基礎疾患	病態の特徴	肺炎球菌感染症 の発症頻度と予 後	ワクチンの免疫 原性	ワクチンの予防 効果	接種推奨の要点
悪・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	化免に液自免に薬が悪い。という術血患性植制の菌し	非との固た 1.78 まで 1.78 ま	血発性PPSV23の告いンはく優血はた を性リアンではが生存といい。 無情が3の告、白原Vい胞にで腫腫接抗さ慢血性のた移低 で腫腫接抗さ慢血性のた移低 をやで種体れ性病が方。植下	19 歳瘍 PCV13 敗院さい。 原腫開 PCV13 敗院さい。 ので前種症有せ(外の のでが、 のでのでが、 のでのでが、 のでのでが、 のでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでので	悪臓に回及 PCV15 PPSV23 に推 移 PCV20 PPSV23 に推 移 PCV20 PPSV23 を
免疫不全(児)	機的髄者用症損免H疾吸患能免法者髄こは症い・症を内体K原金、関連な不動性の下腹、 IRな不感循の不、制け移動を動すと解え、 IRな不感循の不、制け移動を動すと関係とする、関慢性耳欠4発症悪・性肝病学い・け者感や対し、性呼疾機、療る骨たで染す学性う装損欠性、性呼疾機、療る骨たで染す	血液 HIV/AIDS、 HIV/AIDS、 根状いてAIDS、 にのそ2021 年 の 10 道 ン は、127 が 10 元 イ 10 元 10 元 10 元 10 元 10 元 10 元 10	小腫移て後3、19A の血る胞認(無PC抗好医療、 の5、19A の型ものれ内症接触が外PC加染幹け原でを疾後CV13型ものれ内症接体が好Vは十一15球者細た性いむ・者3型へ対上に一昇で、患種上が単体が、、同移者確の血骨お接17す昇対Bがい。者に昇が回保(一鎌H種植で認施性が種、、るとす細確るのよは、接持海、状V造を免さ、	基小炎のい十い小患すIP中炎を人ぎ接ああ 一般児球予て分な児者るD、球接はず種っる 実に菌防は検い病の調患3菌種 20、がた(思対ワ効現証。院IP査者回ワレクワ不可米 のすク果状で のDで61上チいにチ分性)。 る肺ンつはて 植関、人肺ンたすンでが	免性患小PCV13/PCV20 不患し児13/PCV20 不患し児3/PCV20 PCV20 も PCV20 も PCV20 も PCV23 をを で で で で で で で で り で り で り で り で り で

はじめに

わが国では 23 価肺炎球菌莢膜ポリサッカライドワクチン (PPSV23、ニューモバックス NP®、ニューモバックス NP シリンジ®)、15 価結合型肺炎球菌ワクチン (PCV15、バクニュバンス®) に次いで、2024 年 8 月に 20 価結合型肺炎球菌ワクチン (PCV20、プレベナー20®) が高齢者と 64 歳未満のハイリスク者に対して薬事承認された。

小児の定期接種には PCV15 または PCV20、65 歳以上の定期接種には PPSV23 が用いられているが、日本呼吸器学会・日本感染症学会・日本ワクチン学会はハイリスク者の診療領域を専門とする 5 学会(日本循環器学会、日本腎臓学会、日本肝臓学会、日本糖尿病学会、日本リウマチ学会)の協力のもと、2021 年 3 月 17 日に「6 歳から 64 歳のハイリスク者に対する肺炎球菌ワクチン接種の考え方」を、2023 年 6 月 26 日には PCV15 の適応拡大を受け「同 第 2 版」を公表し、65 歳未満のハイリスク者に任意接種としての肺炎球菌ワクチン接種を推奨してきた。このたび、PCV20 の薬事承認を受け、「6 歳から 64 歳のハイリスク者に対する肺炎球菌ワクチン接種の考え方 第 3 版」を公表することとした。

<u>なお、65 歳以上の成人については、上記3学会から2024年9月6日に「65 歳以上の</u>成人に対する肺炎球菌ワクチン接種に関する考え方 (第6版)」を公表している1)。

1. 小児および成人の肺炎球菌の血清型分布の動向について

2010 年 11 月から 5 歳未満小児に導入された PCV7、2013 年 11 月から定期接種になった PCV13 の影響で、小児のワクチン血清型の侵襲性肺炎球菌感染症(invasive pneumococcal disease, IPD)は劇的に減少した一方、非ワクチン血清型による IPD が増加した 2。2023 年の小児 IPD 原因菌の血清型分布は、PCV13 血清型は 2.5%(血清型 3 のみ)と少なく、PCV15 血清型が 10%、PCV20 血清型と PPSV23 血清型がいずれも 35%であった 3。その後、2024年4月に PCV15が、10月にはそれに加えて PCV20が小児の定期接種ワクチンとなった。一方、成人の IPD サーベイランスを開始した 2013年時点には、すでに成人 IPD の原因菌の血清型分布において原因菌の PCV7 血清型が減少していた。この結果は小児に導入された PCV の間接効果と考えられた 4。2014年10月から、65歳以上に対して PPSV23が定期接種ワクチンとなったが、PPSV23 定期接種導入による成人 IPD の原因菌の血清型分布に対する影響は明らかではない。2013年から 2019年にかけて PCV13血清型による IPD は有意に減少しているが、PPSV23血清型による IPD には有意な差はみられていない 5。2023年の成人 IPD サーベイランスの原因菌の血清型分布は、PCV13血清型が 26%、PCV15血清型が 30%、PCV20血清型と PPSV23血清型がいずれも 45%であった 3。ワクチン血清型の中では、血清型 3 が多く全体の 13%を占めている。

引用文献

1. 感染症・結核学術部会ワクチン WG/日本感染症学会ワクチン委員会/日本ワクチン学会・合同委員会 日.65 歳以上の成人に対する肺炎球菌ワクチン接種に関する考え方 (第

6版 2024年9月6日)

https://www.kansensho.or.jp/uploads/files/guidelines/o65haienV/o65haienV 240930.pdf . Accessed Feb 18, 2025.

- Suga S, et al. Nationwide population-based surveillance of invasive pneumococcal disease in Japanese children: Effects of the seven-valent pneumococcal conjugate vaccine. Vaccine 2015;33(45):6054-6060. doi: 10.1016/j.vaccine.2015.07.069
- 3. 小児・成人の侵襲性肺炎球菌感染症の疫学情報. https://ipd-information.com. Accessed Jan 29, 2025.
- 4. Fukusumi M, *et al.* Invasive pneumococcal disease among adults in Japan, April 2013 to March 2015: disease characteristics and serotype distribution. BMC Infect Dis 2017;17(1):2. doi: 10.1186/s12879-016-2113-y
- Tamura K, et al. Dynamic changes in clinical characteristics and serotype distribution
 of invasive pneumococcal disease among adults in Japan after introduction of the
 pediatric 13-valent pneumococcal conjugate vaccine in 2013-2019. Vaccine
 2022;40(24):3338-3344. doi: 10.1016/j.vaccine.2022.04.062

2. 小児および成人におけるハイリスク者

肺炎球菌は小児・成人において、菌血症を伴わない肺炎、中耳炎等の非侵襲性感染症や 髄膜炎、菌血症などの侵襲性感染症を起こす。わが国の 2018~2021 年の感染症発生動向 調査における IPD の報告数は 5 歳未満の小児と 65 歳以上の高齢者に多いが、5~64 歳の 年齢層も全体の 25.0%を占めている 1)。特に 55~64 歳ではそれ以下の年齢層に比べて報 告数の著明な増加が認められる。

1) 6~14歳の小児における IPD の基礎疾患

6歳以上でIPD罹患リスクが高い基礎疾患を有する小児に対しては、肺炎球菌ワクチンによる積極的な予防が推奨される。しかし、日本小児感染症学会会員を対象として2017年に行われたアンケートでは、定期接種年齢対象外のIPDハイリスク者に対してPCV13も、またPPSV23も十分に接種されている状況ではなかった²⁾。

2014~2021年の全国10道県の小児IPDサーベイランス調査(AMED「菅班」)における年齢層別の基礎疾患の割合を表2に示す³)。この期間の小児IPD患者のうち基礎疾患を有する者の割合は、5歳以下では13.1%であったのに対して、6~14歳では42.7%と高率であった。6~14歳における主な基礎疾患は、血液・腫瘍性疾患、神経疾患、髄液漏・人工内耳、先天性免疫不全症候群、染色体異常などが多かった。

2) 15~64 歳の IPD 患者における基礎疾患

2013~2018年に10道県で実施した成人IPDサーベイランス(厚生労働科学研究「大石班」)において登録された1,702症例の基礎疾患の割合を、15~64歳と65歳以上に分けて表3に示す。65歳以上では基礎疾患を認める症例は72.2%だったが、15~64歳では57.7%と少ない結果であった。15歳以上の全年齢の基礎疾患としては糖尿病が最も多く、次に治療中の固形癌、ステロイド薬投与、慢性心疾患、自己免疫性疾患等の順であった。15~64歳の主要な基礎疾患としては、糖尿病、自己免疫性疾患、ステロイド薬投与、慢性肝疾患、固形癌(治療中)と続き、免疫抑制薬投与、脾摘後、先天性無脾/脾低形成、造血幹細胞移植後、慢性腎臓病、慢性心疾患などが認められている。65歳以上と比べて、15~64歳において頻度が高い基礎疾患は自己免疫性疾患、慢性肝疾患、脾摘後、造血幹細胞移植後などであった。

15~64 歳の IPD 症例 (n=534) の IPD 発症 5 年以内のワクチン接種率の調査では、PPSV23 接種例は 14 人 (2.3%) であり、PCV13 接種例は 1 人も確認されなかった。一方、65 歳以上の IPD 症例 (n=1,168) のうち PPSV23 接種歴ありは 150 人 (12.8%)、PCV13 の接種歴ありは 2 人 (0.2%)、PCV13・PPSV23 の両方接種ありは 4 人 (0.5%) だった。このように、15~64 歳の IPD 患者における肺炎球菌ワクチンの接種割合は低率であった。 かが国の 12 自治体住民の保険請求データをもとに 2015~2016 年に実施された観察研究によると、肺炎を含む肺炎球菌感染症と関連する基礎疾患は、全年齢では慢性心疾患、慢性肺疾患、慢性肝疾患、糖尿病、がん、慢性腎疾患が多かった 4)。64 歳以下では、50~64 歳における肺炎球菌感染症の 10 万人・年当りの罹患率は 19~49 歳よりも約 5 倍高く (25.6 vs.5.3)、50~64 歳の基礎疾患は慢性肺疾患、慢性肝疾患、慢性心疾患、糖尿病、がんの順に多かった 4)。

わが国で 2010~2017 年に行われた自主的 IPD サーベイランスによる多施設観察研究では、6~64 歳の IPD 患者の 72.6%が基礎疾患を有し、がん (19.9%)、糖尿病 (18.9%)、肝疾患 (16.6%)、心血管疾患 (10.5%)、先天性免疫不全症 (9.9%)、神経精神疾患 (9.9%)の順であった 5。また、免疫不全以外の基礎疾患を 2 つ以上持つ患者は、基礎疾患を持たない IPD 患者に比べて、IPD による死亡リスクが有意に高かった (ハザード比 HR 2.6) 5。

表 2 小児 IPD 患者の年齢層別基礎疾患の割合($2014\sim2021$ 年)

	年代別患者数、No. (%)		
年齢グループ	0~14 歳	0~5歳	6~14 歳
患者数(%)	903 (100)	814 (100)	89 (100)
基礎疾患あり	145 (16.1)	107 (13.1)	38 (42.7)
基礎疾患の種類			
先天性免疫不全症候群	8 (0.9)	5 (0.6)	3 (3.4)
血液疾患、小児がん	15 (1.7)	5 (0.6)	10 (11.2)
無脾症	5 (0.6)	5 (0.6)	0 (0.0)
臓器移植後	4 (0.4)	2(0.2)	2(2.2)
髄液漏、人工内耳、頭部外傷	5 (0.6)	1 (0.1)	4 (4.5)
染色体異常	10 (1.1)	7 (0.9)	3 (3.4)
神経疾患、てんかん	21 (2.3)	16 (2.0)	5 (5.6)
心疾患	31 (3.4)	30 (3.7)	1 (1.1)
先天性心疾患	31 (3.4)	30 (3.7)	1 (1.1)
腎疾患	20(2.2)	18 (2.2)	2(2.2)
ネフローゼ症候群	10 (1.1)	8 (1.0)	2(2.2)
アレルギー疾患	9 (1.0)	7 (0.9)	2(2.2)
気管支喘息	7 (0.8)	5 (0.6)	2(2.2)
早産児、低出生体重児	10 (1.1)	9 (1.1)	1 (1.1)
その他	23 (2.5)	15 (1.8)	8 (9.0)

表 3 成人 IPD 患者の年齢層別基礎疾患の割合(2013~2018 年)

	年代別患者数、No. (%)			
年齢グループ	15 歳以上	15~64 歳	65 歳以上	
患者数(%)	1,702 (100)	534 (100)	1,168 (100)	
基礎疾患あり	1,151 (67.6)	308 (57.7)	843 (72.2)	
基礎疾患の種類				
糖尿病	255 (15.0)	57 (10.7)	198 (17.0)	
固形癌 (治療中)	170 (10.0)	36 (6.7)	134 (11.5)	
ステロイド薬投与	124 (7.3)	39 (7.3)	85 (7.3)	
慢性心疾患	123 (7.2)	12 (2.2)	111 (9.5)	
自己免疫性疾患	112 (6.6)	41 (7.7)	71 (6.1)	
悪性腫瘍の既往	109 (6.4)	12 (2.2)	97 (8.3)	
慢性閉塞性肺疾患	98 (5.8)	9 (1.7)	89 (7.6)	
慢性腎臓病	80 (4.7)	16 (3.0)	64 (5.5)	
心血管障害	73 (4.3)	6 (1.1)	67 (5.7)	
慢性肝疾患	72 (4.2)	39 (7.3)	33 (2.8)	
免疫抑制薬投与	44 (2.6)	25 (4.7)	19 (1.6)	
脾摘後	39(2.3)	22 (4.1)	17 (1.5)	
先天性無脾/ 脾低形成	30 (1.8)	17 (3.2)	13 (1.1)	
造血幹細胞移植後	22 (1.3)	19 (3.6)	3 (0.3)	
生物製剤投与	21 (1.2)	9 (1.7)	12 (1.0)	

引用文献

- 1. 国立感染症研究所. IASR 44 (2023 年 1 月号) 肺炎球菌感染症 2022 年現在 図 2. https://www.niid.go.jp/niid/ja/pneumococcal-m/1372-idsc/iasr-topic/11763-515t.html. Accessed Jan 29, 2025.
- 2. 竹下健一, 他. ハイリスク小児におけるインフルエンザ菌 b 型ワクチン、肺炎球菌ワクチン接種状況に関するアンケート. 小児感染免疫 2018;30(1):57-62
- 3. 小児・成人の侵襲性肺炎球菌感染症の疫学情報. https://ipd-information.com. Accessed Jan 29, 2025.
- Fukuda H, et al. Risk factors for pneumococcal disease in persons with chronic medical conditions: Results from the LIFE Study. Int J Infect Dis 2022;116:216-222. doi: 10.1016/j.ijid.2021.12.365
- Hanada S, et al. Multiple comorbidities increase the risk of death from invasive pneumococcal disease under the age of 65 years. J Infect Chemother 2021;27(9):1311-1318. doi: 10.1016/j.jiac.2021.04.018

3. 慢性心疾患

【病態の特徴】

慢性心疾患、特に慢性心不全で肺炎リスクが高まる理由として、心拡大に伴う気管支の圧迫による換気障害、肺うっ血による気道分泌物の増量および喀痰の喀出困難などが考えられる。また心不全下では心拍出量が低下しているため、肺炎を発症した際は通常より容易に低酸素状態に陥り心不全の急性増悪を来たしやすい。さらに肺炎によって誘導される炎症性サイトカインや酸化ストレスによって動脈硬化の進展や心機能の低下が起こり、間接的に心不全の急性増悪へとつながるおそれがあるり。台湾のナショナルデータベースを用いた13年間の長期的コホート研究では、急性冠症候群 (acute coronary syndrome: ACS) 罹患歴のない20歳以上の肺炎球菌性肺炎患者20,111名と肺炎球菌性肺炎罹患歴のない対象患者80,444名を比較し、年齢に関係なく肺炎球菌性肺炎に罹患することでACS罹患リスクが増加し、特に40~54歳において罹患率比(IRR)3.52と最も高かったり。肺炎球菌性肺炎患者では心房細動などの不整脈や心不全などの心疾患イベントの発症リスクが高まることも報告されている3。

【肺炎球菌感染症の発生頻度と予後】

デンマークで行われた 15 歳以上の肺炎患者 67,162 人とコントロール 671,620 人の症例 対照研究では、心不全患者と非心不全患者での肺炎リスクを比較検討し、慢性心不全を有する場合の肺炎発症リスクのオッズ比 (OR) は 1.81 (95% CI 1.76-1.86) と高かった 4 。

米国で実施された 2006~2010 年の医療費請求統合データベースを用いた基礎疾患別の肺炎球菌感染症の発症率に関する後方視的解析では、慢性心疾患を有する 65 歳以上の高齢者の肺炎球菌性肺炎の発症リスクは基礎疾患がない場合より 3.8 倍 (95% CI 3.8-3.8) 高かった 50。2008~2009 年に英国で実施された侵襲性肺炎球菌感染症 (IPD) 22,298 例の解析では、致命率を並存疾患ごとに評価し、基礎疾患のない 16~64 歳は 5.4%であったのに対し、同年代の慢性心不全合併では 19.7% (4.3 倍)、基礎疾患のない 65 歳以上では 29.1%であるのに対し、慢性心不全合併では 36.2%と 1.4 倍のリスクであったことが報告されている 60。本邦では JMDC (Japan Medical Data Center) と MDV (Medical Data Vision)のデータベースをもとに、1,040 万人 (19 歳以上)を対象として基礎疾患と肺炎球菌性肺炎および IPD の発症リスクに関する後方視的観察コホート研究が実施されており、いずれのデータベースでも慢性心疾患を有する患者の肺炎球菌性肺炎と IPD の発症リスクは、健常人と比較して JMDC でそれぞれ 7.1 (95%CI 5.7-8.8)、15.7 (95%CI 8.8-28.0)、MDVで 2.6 (95%CI 2.3-2.9)、4.7 (95%CI 2.8-7.9) と高かった 7。

このように慢性心疾患では肺炎球菌性肺炎や IPD を合併しやすく、その致命率も高いと考えられる。

【肺炎球菌ワクチンの免疫原性】

慢性心疾患を有する患者のみを対象とした肺炎球菌ワクチンの免疫原性に関する評価は行われていない。肺炎球菌感染症の罹患リスクを有する肺炎球菌ワクチン接種歴のない6~64歳の日本人に PCV13 を単回接種したときの安全性、忍容性および免疫原性の評価が行われている8。この非盲検試験では合計200人が PCV13を接種され、接種対象者には心血管疾患を基礎疾患に有する者が6~17歳で11.3%、18~65歳未満で11.8%が含まれていた。免疫原性は PCV13接種1か月後のOPAを13の血清型について評価し、その増加倍率(OPA GMFR)で行われている。その結果、65歳未満の全被験者において13種類の血清型すべてについて PCV13接種前と比較してOPAの増加がみられた8。

また 105 人の介護施設入所中の 80 歳以上の高齢者(うっ血性心不全の患者が PCV7 接種群で 24.5%、PPSV23 接種群で 19.6%含まれる)を対象とした PPSV23 と PCV7 の免疫原性の比較研究も行われている 9。免疫原性は IgG 抗体価 (GMC)と OPA で評価されており、いずれのワクチンでも免疫原性は認められたが、PCV7 含有血清型については PCV7 の方が PPSV23 より高かったと報告されている 9)。

慢性心疾患などの肺炎球菌感染症リスク因子を有する患者を含む $18\sim49$ 歳の成人を対象に行われた PCV13 または PCV15 と PPSV23 の 6 か月間隔の連続接種における免疫原性を評価した海外第 III 相比較試験では、PPSV23 接種前に比べて、連続接種 1 か月後の IgG 抗体価 (GMC) と OPA はすべての血清型で上昇していた 10 。

肺炎球菌ワクチン未接種の成人を対象とした第Ⅲ相・ランダム化・二重盲検試験の事後解析では、18~64歳および18~49歳の参加者のうち、肺炎球菌感染症の発症リスクが高い

慢性疾患を有する成人または喫煙者における PCV20 の免疫原性が評価された ¹¹⁾。1,329 人 (全体の 30%) が心血管系疾患を含む 1 つ以上のリスク因子を有しており、PCV20 接種前と比較し接種 1 か月後では PCV20 に含まれる全ての血清型で OPA 幾何平均力価が大幅に増加した ¹¹⁾。

このように慢性心疾患患者を含むハイリスク群において、肺炎球菌ワクチンの免疫原性は十分認められ、特に結合型ワクチンにおいて高く、PCV15 と <u>PCV20</u>で大差はないと考えられるが、その維持期間については明確ではない。

【ワクチン予防効果】

肺炎球菌ワクチンによる心疾患の増悪抑制に関するエビデンスは十分ではない。スペイ ンで実施された60歳以上の高齢者27,204例を対象とした集団ベースの前方視的コホート研 究では、34%がPPSV23を接種されているが、ワクチン接種と心筋梗塞の発症頻度に相関 性は示されていない12。一方、米国で実施された107.045名の心不全を有する退役軍人を 対象とした後方視的研究では、PPSV23接種によって1年後の致命率が調整後OR 0.77と有 意に低下したと報告されている13。さらにカナダで実施された18歳以上の市中肺炎患者 6.171人(平均年齢59歳)を対象とした集団ベースの前方視的コホート研究では、PPSV23 接種群 (n=724)と未接種群 (n=724)で傾向スコア解析を行い、PPSV23接種群ではACS発 生率が調整後ハザード比(HR)0.46(95% CI0.28-0.73)と有意に低下した14。肺炎球菌 ワクチン接種による心保護作用(炎症性サイトカイン制御による心不全の増悪・急性冠症 候群への進展防止、ワクチン接種によって誘導される肺炎球菌特異的IgM抗体の酸化LDL コレステロールへの結合とマクロファージへの取り込み抑制による動脈硬化進展の抑制) がその要因として考えられている¹⁵⁾。<u>さらに心血管疾患または心血管疾患の高いリスクを</u> 有する患者の全死亡率と肺炎球菌ワクチン接種の関連について系統的レビューが実施さ れ、合計163,756人を含む5つの観察研究のメタ解析の結果、PCV13および/または PPSV23接種群は、対照群 (ワクチンのプラセボまたは非接種群)と比較し、全死亡率が 22%減少したと報告されている160。

わが国の自治体保有の健康関連データを基にした症例対照研究(VENUS study)で も、PPSV23接種者は非接種者に比べて、心筋梗塞と脳卒中の発生頻度がそれぞれオッズ 比(OR) 0.70 (95% CI 0.62-0.80) とOR 0.81 (95% CI 0.77-0.86) で有意に低かった ことが報告されている¹⁷⁾。特に、接種後180日以内の心筋梗塞の発生頻度は、接種後720日 以降に比べてOR 0.55 (95% CI 0.42-0.72) とさらに低かった。

慢性心疾患に限定し肺炎球菌ワクチンの効果を検討した論文は少ないものの、肺炎球菌 感染症の予防効果および心不全増悪・心血管イベント発症の抑制効果は期待できると思わ れる。日本循環器学会/日本心不全学会合同ガイドラインでは、心不全患者では感染症を 契機に症状の増悪をきたすことが多いため、インフルエンザや肺炎球菌感染症に対するワ クチン接種が推奨されている18) (2025年3月末改訂予定)。

【肺炎球菌ワクチンの接種推奨の要点】

- 1) 慢性心疾患患者は、肺炎球菌性肺炎や IPD に罹患するリスクが高い。肺炎球菌性肺炎 に罹患すると、心不全の急性増悪や虚血性心疾患を併発し生命予後が悪化する危険性 があり、肺炎球菌ワクチンによる肺炎予防は重要である。
- 2) 慢性心疾患患者に限定した肺炎球菌ワクチンの肺炎球菌感染症予防効果を検証したランダム化比較試験 (RCT) は存在しないが、肺炎球菌感染症罹患に伴う心不全の増悪や虚血性心疾患の予防効果が期待でき、免疫原性もみられるため接種が推奨される。
- 3) 慢性心疾患患者は心不全だけでなく、慢性肺疾患、慢性腎疾患、糖尿病など複数のリスク因子を有していることも少なくなく、複数のリスク因子を有する場合の IPD の予後は不良であるため 19)、肺炎球菌ワクチンの接種が推奨される。
- 4) <u>ワクチン接種歴のない</u> 19 歳から 64 歳の慢性心疾患患者に対する肺炎球菌ワクチンの接種方法について、米国 Advisory Committee on Immunization Practices (ACIP) は <u>PCV20、PCV21 (日本未承認)の1回接種</u>、あるいは PCV15 と PPSV23 の連続接種を推奨している ^{20,21)}。
- 5) わが国においては慢性心疾患患者に対する、PCV20単回接種およびPCV15とPPSV23 連続接種の免疫原性や安全性、予防効果等のデータがなく、現段階ではPPSV23単回接種の推奨が適切と考えられる。しかしながら、発症した場合の生命予後が不良と考えられる場合、または慢性腎不全や重度の糖尿病を合併し全身的な免疫能低下が予想される場合は、PCV20の単回接種またはPCV15とPPSV23の連続接種も選択肢として考えられる。

引用文献

- Bhatt AS, et al. Can vaccinations improve heart failure outcomes?: contemporary data and future directions. JACC Heart Fail 2017;5(3):194-203. doi: 10.1016/j.jchf.2016.12.007
- 2. Wang CC, et al. Pneumococcal pneumonia and the risk of acute coronary syndrome: a population-based cohort study. Int J Cardiol 2013;168(4):4480-4481. doi: 10.1016/j.ijcard.2013.06.134
- 3. Musher DM, *et al.* The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis 2007;45(2):158-165. doi: 10.1086/518849
- 4. Mor A, et al. Chronic heart failure and risk of hospitalization with pneumonia: a population-based study. Eur J Intern Med 2013;24(4):349-353. doi: 10.1016/j.ejim.2013.02.013
- 5. Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024

- 6. van Hoek AJ, *et al.* The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect 2012;65(1):17-24. doi: 10.1016/j.jinf.2012.02.017
- 7. Imai K, *et al.* Risk of pneumococcal diseases in adults with underlying medical conditions: a retrospective, cohort study using two Japanese healthcare databases. BMJ Open 2018;8(3):e018553. doi: 10.1136/bmjopen-2017-018553
- 独立行政法人医薬品医療機器総合機構. プレベナー13 水性懸濁注 審査報告書.
 https://www.pmda.go.jp/drugs/2020/P20200512001/671450000 22500AMX00917 A100
 _1.pdf. Accessed Jan 30, 2025.
- 9. Namkoong H, et al. Comparison of the immunogenicity and safety of polysaccharide and protein-conjugated pneumococcal vaccines among the elderly aged 80 years or older in Japan: an open-labeled randomized study. Vaccine 2015;33(2):327-332. doi: 10.1016/j.vaccine.2014.11.023
- 10. Hammitt LL, et al. Phase 3 trial to evaluate the safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, followed by 23-valent pneumococcal polysaccharide vaccine 6 months later, in at-risk adults 18-49 years of age (PNEU-DAY): A subgroup analysis by baseline risk factors. Hum Vaccin Immunother 2023;19(1):2177066. doi: 10.1080/21645515.2023.2177066
- 11. Sabharwal C, et al. Immunogenicity of a 20-valent pneumococcal conjugate vaccine in adults 18 to 64 years old with medical conditions and other factors that increase risk of pneumococcal disease. Hum Vaccin Immunother 2022;18(6):2126253. doi: 10.1080/21645515.2022.2126253
- Vila-Corcoles A, et al. Clinical effectiveness of pneumococcal vaccination against acute myocardial infarction and stroke in people over 60 years: the CAPAMIS study, oneyear follow-up. BMC Public Health 2012;12:222. doi: 10.1186/1471-2458-12-222
- Wu WC, et al. Association between process quality measures for heart failure and mortality among US veterans. Am Heart J 2014;168(5):713-720. doi: 10.1016/j.ahj.2014.06.024
- Eurich DT, et al. Pneumococcal vaccination and risk of acute coronary syndromes in patients with pneumonia: population-based cohort study. Heart 2012;98(14):1072-1077. doi: 10.1136/heartjnl-2012-301743
- 15. Ciszewski A. Cardioprotective effect of influenza and pneumococcal vaccination in patients with cardiovascular diseases. Vaccine 2018;36(2):202-206. doi: 10.1016/j.vaccine.2017.11.078

- 16. Marques Antunes M, et al. Pneumococcal vaccination in adults at very high risk or with established cardiovascular disease: systematic review and meta-analysis. Eur Heart J Qual Care Clin Outcomes 2021;7(1):97-106. doi: 10.1093/ehjqcco/qcaa030
- 17. Narii N, et al. Association of pneumococcal vaccination with cardiovascular diseases in older adults: The vaccine effectiveness, networking, and universal safety (VENUS) study. Vaccine 2023;41(13):2307-2313. doi: 10.1016/j.vaccine.2023.02.077
- 18. 日本循環器学会/日本心不全学会. 2021 年 JCS/JHFS ガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021 Tsutsui.pdf. Accessed Feb 1, 2025.
- Hanada S, et al. Multiple comorbidities increase the risk of death from invasive pneumococcal disease under the age of 65 years. J Infect Chemother 2021;27(9):1311-1318. doi: 10.1016/j.jiac.2021.04.018
- 20. Kobayashi M, et al. Pneumococcal vaccine for adults aged ≥19 years: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023;72(3):1-39. doi: 10.15585/mmwr.rr7203a1
- 21. Kobayashi M, et al. Use of 21-valent pneumococcal conjugate vaccine among U.S. adults: Recommendations of the Advisory Committee on Immunization Practices United States, 2024. MMWR Morb Mortal Wkly Rep 2024;73(36):793-798. doi: 10.15585/mmwr.mm7336a3

4. 慢性肺疾患

【病態の特徴】

慢性閉塞性肺疾患(COPD)や気管支拡張症、間質性肺炎をはじめとした慢性肺疾患患者では、気道クリアランスの低下に伴い、末梢気道の炎症による喀痰量増加や局所免疫の低下がみられ、また、ステロイド薬や免疫抑制薬等の使用によって全身的な免疫低下をきたしている場合も多い。その結果、健常者と比較しウイルス感染や二次性の細菌感染症を起こしやすく、末梢気道の狭窄や肺胞構造の破壊による呼吸機能低下が基礎にあるため、重度の呼吸不全を合併しやすい。COPDと下気道感染症はそれぞれ世界の死亡原因の第3位、第4位とされている。

【肺炎球菌感染症の発生頻度と予後】

1) 侵襲性肺炎球菌感染症 (IPD) 発生頻度

国外データ:米国 ABCs (Active Bacterial Core surveillance) と NHIS (National Health Interview Survey)を用いた報告 1)では、1999~2000 年の成人慢性肺疾患患者における IPD

罹患率は 10 万人対 62.9 で、健常者と比較して 5.6 倍高かった。65 歳未満においても慢性肺疾患患者は健常者と比較して IPD 罹患率が高く、年齢別では、35~49 歳で 10 万人対 16.3、50~64 歳で 57.2 であった。同サーベイランスを用いた PCV13 導入前後の IPD 発生頻度をみた研究では 2)、65 歳未満の成人慢性肺疾患患者における IPD 罹患率は 2007~2008 年 10 万人対 16.0(健常者 7.7)、2013~2014 年 13.9(健常者 3.9)であり、PCV13 導入後の IPD 血清型は PCV13 型が減少し、PPSV23 型や非ワクチン型が増加していた。また、米国の医療費請求リポジトリー(2006~2010 年)を用いた報告 3)においても、65 歳未満の慢性肺疾患患者での IPD 罹患率は健常者と比較して高く、18~49 歳で 6.3 倍、50~64 歳で 7.7 倍であった。

国内データ: JMDC (Japan Medical Data Center) データベースを使用して算出した慢性 肺疾患患者における 10 万人当りの IPD 罹患率は、 $19\sim49$ 歳で 0、 $50\sim64$ 歳で 19.7 であり、 $50\sim64$ 歳では健常者と比較して 12.9 倍であった 40。 MDV (Medical Data Vision) データベースを使用して算出した慢性肺疾患患者における 10 万人当りの IPD 罹患率は、 $19\sim49$ 歳で 5.9、 $50\sim64$ 歳で 18.4 であり、健常者と比較してそれぞれ 6.5 倍、21.4 倍であった。

2) 肺炎球菌性肺炎発生頻度

国外データ:米国医療費請求リポジトリー($2006\sim2010$ 年)を用いた報告 30 では、健常者と比較した慢性肺疾患患者における肺炎球菌性肺炎罹患率は、 $18\sim49$ 歳で8.9倍、 $50\sim64$ 歳で9.8倍であった。

国内データ: JMDC データベースを使用して算出した慢性肺疾患患者における 10 万人当りの肺炎球菌性肺炎罹患率は $19\sim49$ 歳で 51.6、 $50\sim64$ 歳で 143.1 であり、健常者と比較してそれぞれ 8.2 倍、12.8 倍であった。MDV データベースを使用して算出した慢性肺疾患患者における 10 万人当りの肺炎球菌肺炎罹患率は $19\sim49$ 歳で 97.8、 $50\sim64$ 歳で 212.1 であり、健常者と比較してそれぞれ 5.6 倍、6.8 倍であった 4)。

【肺炎球菌ワクチンの免疫原性】

国外データ:台湾の成人 COPD 患者(n=80、65 歳未満 11 例含む)に PPSV23 を接種し、 6 週後に 8 種の血清型(4、6B、7F、9V、14、18C、19F、23F)に対する特異 1gG 濃度を 測定した結果、すべての血清型において 2 倍以上の 1gG 濃度上昇がみられた 5。また米国の 40 歳以上の成人 COPD 患者 181 人を PPSV23 接種群(90 人、平均年齢 64 歳)と PCV7接種群(91 人、平均年齢 63 歳)に割り付けて、接種 1 か月、1 年、2 年後にそれぞれ 7 種の血清型に対する特異的 1gG および特異的 OPA を測定した結果、PCV7 群は PPSV23 群と比較して、大部分の血清型に対して特異的 1gG および OPA 値が高い傾向を示した 6, 7。また、リスク因子を有する $18\sim49$ 歳の成人を対象に 6 か月間隔で PCV15-PPSV23、また

は PCV13-PPSV23 を連続接種した第 III 相試験のサブ解析では、慢性肺疾患患者においても安全性が確認され、各血清型に対する特異的 IgG 濃度と OPA 値も保たれていた 8。

国内データ: 40 人の慢性肺疾患患者(平均年齢 77 歳)に対して PPSV23 を平均 7 年 7 か月間隔で 2 回接種し、4 種類の血清型(6B、14、19F、23F)に対する特異的 IgG 濃度と OPA を測定した結果、血清型 6B 以外においては IgG 濃度と OPA 値の上昇がみられ、さらに 2 回接種による安全性も確認された 9。

【ワクチン予防効果】

12 のランダム化比較試験(RCT)を解析対象としたシステマティック・レビュー・メタアナリシスで、PPSV23 の COPD 患者(2,171 人、平均年齢 66 歳)に対する肺炎予防効果について検討した結果、PPSV23 接種群は非接種群と比較して、市中肺炎の発生が有意に減少し(オッズ比 OR 0.61、95% CI 0.42-0.89)、COPD の増悪予防効果が見られた(OR 0.60、95% CI 0.39-0.93)が、肺炎球菌性肺炎の発症率には有意差は見られなかった(OR 0.26、95% CI 0.05-1.31) 10。

このメタアナリシスに含まれる論文で、596 人の COPD 患者を対象とした RCT (平均年齢 65.8 歳) における 65 歳未満の部分集団での比較では、PPSV23 接種による市中肺炎の予防効果(76%)がみられ、肺炎球菌性肺炎 5 例はすべて PPSV23 非接種群に発生していた 11 。また、%FEV1.0 が 40%未満の群で市中肺炎の予防効果(91%)がみられた。

香港における疾患コードを用いた 7 年間のデータベースを基にした後ろ向き研究で、インフルエンザで入院した慢性気道疾患(喘息、気管支拡張症、COPD)を有する全ての成人患者 3,066人(年齢平均値 76.2歳)を対象とし、肺炎球菌ワクチン(PPSV23/PCV13)連続接種群と非接種群の間で、二次性細菌性肺炎、死亡率、およびその他の重度の院内転帰の発生を比較した。PPSV23/PCV13の連続接種群では、二次性細菌性肺炎、全原因死亡率、および呼吸器原因死亡率の発生が有意に減少し、調整後オッズ比はそれぞれ 0.74(95% CI 0.57-0.95、p = 0.019)、0.12(95% CI 0.03-0.53、p =0.005)、および 0.04(95% CI 0.00-0.527、p = 0.0038)であった 12)。

【肺炎球菌ワクチンの接種推奨の要点】

- 1) 肺炎球菌感染症の発生頻度について、健常者と比較して 65 歳未満の成人では 5 倍以上の IPD と肺炎球菌性肺炎の発生リスクがある。 65 歳未満の重症例を含む COPD 患者において PPSV23 接種の肺炎予防効果が確認されていることから、同年齢層の重症例を含む慢性肺疾患患者に対して PPSV23 接種が推奨できると考えられる。
- 2) 免疫原性については、ワクチン接種後に大部分の血清型について特異的 IgG 濃度が上昇し、OPA も得られている。PCV13 と PPSV23 の免疫原性の比較では、PCV13 の方がやや優れている。また、PPSV23 の 2 回接種による安全性や抗体価の再上昇も得ら

- れていることから、65 歳未満での PPSV23 の 5 年間隔での再接種は可能な選択肢である。
- 65 歳未満の重症慢性肺疾患患者に対する <u>PCV20 の単回接種または PCV15-PPSV23</u> の連続接種についても有用な選択肢と考える。

引用文献

- Kyaw MH, et al. The influence of chronic illnesses on the incidence of invasive pneumococcal disease in adults. J Infect Dis 2005;192(3):377-386. doi: 10.1086/431521
- Ahmed SS, et al. Early impact of 13-valent pneumococcal conjugate vaccine use on invasive pneumococcal disease among adults with and without underlying medical conditions-United States. Clin Infect Dis 2020;70(12):2484-2492. doi: 10.1093/cid/ciz739
- 3. Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024
- Imai K, et al. Risk of pneumococcal diseases in adults with underlying medical conditions: a retrospective, cohort study using two Japanese healthcare databases. BMJ Open 2018;8(3):e018553. doi: 10.1136/bmjopen-2017-018553
- Lai CC, et al. Antibody responses to pneumococcal polysaccharide vaccine in Taiwanese patients with chronic obstructive pulmonary disease. J Formos Med Assoc 2007;106(3):196-203. doi: 10.1016/S0929-6646(09)60240-0
- 6. Dransfield MT, et al. Long-term comparative immunogenicity of protein conjugate and free polysaccharide pneumococcal vaccines in chronic obstructive pulmonary disease. Clin Infect Dis 2012;55(5):e35-44. doi: 10.1093/cid/cis513
- Dransfield MT, et al. Superior immune response to protein-conjugate versus free pneumococcal polysaccharide vaccine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009;180(6):499-505. doi: 10.1164/rccm.200903-0488OC
- 8. Hammitt LL, et al. Phase 3 trial to evaluate the safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, followed by 23-valent pneumococcal polysaccharide vaccine 6 months later, in at-risk adults 18-49 years of age (PNEU-DAY): A subgroup analysis by baseline risk factors. Hum Vaccin Immunother 2023;19(1):2177066. doi: 10.1080/21645515.2023.2177066
- Ohshima N, et al. Sustained functional serotype-specific antibody after primary and secondary vaccinations with a pneumococcal polysaccharide vaccine in elderly patients with chronic lung disease. Vaccine 2014;32(10):1181-1186. doi: 10.1016/j.vaccine.2013.09.060

- Walters JA, et al. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017;1:CD001390. doi: 10.1002/14651858.CD001390.pub4
- 11. Alfageme I, et al. Clinical efficacy of anti-pneumococcal vaccination in patients with COPD. Thorax 2006;61(3):189-195. doi: 10.1136/thx.2005.043323
- Kwok WC, et al. Protective effects from prior pneumococcal vaccination in patients with chronic airway diseases during hospitalization for influenza-A territory-wide study. Vaccines (Basel) 2024;12(7). doi: 10.3390/vaccines12070704

5. 慢性腎臟病

【病態の特徴】

慢性腎臓病(chronic kidney disease: CKD)では免疫能の低下が指摘されており、Bリンパ球の減少、CD4 陽性 T リンパ球数の減少が認められ、T リンパ球の抗原刺激に対する反応性低下、好中球の機能低下も指摘されている D。したがって、CKD 患者では感染症の併発リスクが高い。腎機能低下が進み末期腎不全、血液透析となるとさらに感染症の併発リスクが上昇し、感染症はわが国の慢性透析患者の死因の第1位である D。

【肺炎球菌感染症の発生頻度と予後】

CKDの感染症による入院リスクについて行われた研究 3 では、感染症による入院リスクは腎機能正常者(eGFR ≥ 90 mL/min/1.73 m 2)に対して、eGFR $15\sim 29$ mL/min/1.73 m 2 ではハザード比(HR)2.55(95%信頼区間(CI)1.43-4.55)、eGFR $30\sim 59$ mL/min/1.73 m 2 では1.48(95%CI 1.28-1.71)と高い。感染症の中では肺炎が最も多く、腎機能の低下とともに併発リスクが増し、それぞれのeGFRでHR 2.21(95%CI 0.95-5.11)、1.44(95%CI 1.15-1.79)であった。保存期CKD患者の感染症による入院後の30日以内の死亡は、それぞれのeGFRでHR 3.76(95%CI 1.48-9.58)、1.62(95%CI 1.20-2.19)と高く、保存期CKDにおいて感染症は予後不良因子である。

わが国の national database (NDB) を用いた肺炎による入院患者の予後研究 4でも、 CKD が肺炎による死亡リスク因子であるという報告があり、CKD 患者の肺炎による入院後 30 日以内の死亡リスクは HR 1.82 (95%CI 1.24-2.47) であった。

スペインからの報告では、保存期 CKD 患者および慢性透析患者患者の生命予後を規定する肺炎の原因菌として肺炎球菌が最も多く、CKD 合併肺炎(n=203)の原因菌の 28.1%を占めたという報告 5がある。

基礎疾患の有無による侵襲性肺炎球菌感染症(IPD)のリスクを年齢層別に検討した $(2008\sim2009$ 年、イングランド)結果 6 では、IPD は 22,298 例($2\sim15$ 歳 1,507 例、16

 \sim 64 歳 9,577 例、65 歳以上 11,214 例)あり、 $\frac{27}{10}$ ネフローゼ症候群、慢性腎不全や腎移植を含む CKD 患者の致命率は 16 \sim 64 歳 26.1%、65 歳以上 44%と高く、基礎疾患のない症例と比較すると、16 \sim 64 歳ではオッズ比(OR)6.2(95%CI 4.8-7.9)、65 歳以上では OR 1.9(95%CI 1.7-2.2)であった。

CKD では肺炎球菌性肺炎や IPD を合併し、致命率も高いと考えられる。

【肺炎球菌ワクチンの免疫原性】

CKD 患者では免疫能の低下のため、ワクチンの免疫原性は低下すると考えられる。

33 人のネフローゼ症候群患者に PCV7 を接種し、血清型特異的抗 IgG 抗体を測定したところ、1 か月後には抗体価の有意な上昇を認めたが、健常者と比べ抗体価はやや低値で、1 年後には低下傾向であった 7 。

42 人の小児ネフローゼ症候群患者に PCV13 を接種し、血清型特異的 IgG 抗体を測定したところ、3 か月後には抗体価の上昇を認め、1 年後にも高い抗体価を維持したという報告もある 8。

155 人の血液透析患者において PPSV23 および PCV13 接種後の血清型特異的 IgG 抗体 と OPA を比較した前向き研究 9では、接種後 4 週目ではともに IgG 抗体、OPA が上昇した。PCV13 の方が有意に上昇した血清型は、IgG 抗体では 6 種類、OPA では 2 種類であった。しかし、52 週後には抗体価は低下し、PCV13 の方が有意に高値を示したのは IgG 抗体 1 種類であり、OPA には差が無かった。また、PPSV23 を先行して接種した群に PCV13 を接種した場合、PCV13 の免疫原性は低下していた。

CKDにおける肺炎球菌ワクチンの免疫原性は健常者に比べやや低下するものの十分認められる。しかし、どのくらいの期間維持されるかについては明確ではない。

【ワクチン予防効果等】

CKD 患者では肺炎と IPD のリスクが高いが、肺炎球菌ワクチンによる両者の予防効果 についての RCT はない。しかしながら、臨床的な有効性を示す報告がある。

肺炎で入院した<u>保存期CKD</u>患者および慢性透析患者203人では、PPSV23の接種歴がある群で有意に死亡の割合が低かった(OR=0.05、95%CI 0.005-0.69)5。ただし、死亡原因についての言及はない。

米国で2003~2005年に血液透析を開始した患者118,533人を対象にPPSV23の入院および死亡に対する効果をみた研究 10 では、PPSV23は死亡を有意に減らし(HR 0.94、95%CI 0.90-0.98)、心疾患死を減らし(HR 0.91、95% CI 0.85-0.97)、菌血症・敗血症・ウイルス血症による入院を減らした(HR 0.95,95% CI 0.91-1.00)。PPSV23とインフルエンザワクチンを接種した群の死亡はHR 0.73(95% CI 0.68-0.78)で低かった。

血液透析患者<u>および腹膜透析患者</u>において 2005/2006 年のインフルエンザシーズンにインフルエンザワクチンと PPSV23 を接種した群では全死亡が有意に減少し、両ワクチンは

独立して効果を示した ¹¹⁾。 <u>死亡の OR は、PPSV23 単独接種群で 0.76 (96% CI 0.70-0.82)、</u> PPSV23 とインフルエンザワクチンの両方接種群で 0.61 (96% CI 0.55-0.68) であった。

わが国の血液透析患者 510 人について PPSV23 の効果をみた研究 ¹²⁾では、PPSV23 接種 群では非接種群に比べ、全死亡が有意に減少し(HR 0.62、95%CI 0.46-0.83)、心血管疾患 による入院が有意に減少し(HR 0.44、95%CI 0.20-0.9)、心疾患による死亡が有意に減少 した(HR 0.36、95%CI 0.18-0.71)。しかしながら、肺炎による入院と死亡については両 群に差がなく、著者らは PPSV23 の心血管疾患に対する直接的な予防効果と推察している。

腎機能低下例を含む米国の test negative study¹³⁾では、PCV13、PPSV23 接種例 180 例、対照 3,889 例(平均年齢 69 歳、女性 48%、白人 97%、平均 eGFR 71 mL/min/1.73 m²)で、肺炎球菌感染症による入院に対するワクチンの有効性を比較した。PCV13 の有効性(VE)は 39%(95%CI 13-58)、PCV13 と PPSV23 の併用の VE は 39%(95%CI 12-58)であった。PPSV23 の VE は・3.7%(95%CI -57-32)であった。eGFR で層別化すると、PCV13 の VE は、eGFR≥60 [VE 38%(95% CI 2.9-61)] および eGFR 30~59 [VE 61%(95%CI 24-80)]で一貫しており、PCV13 接種によって eGFR 30~59 の患者においても肺炎球菌感染症による入院リスクが低下することが明らかになった。eGFR<30 ではサンプルサイズが小さいため VE は算出できなかった。

【肺炎球菌ワクチンの接種推奨の要点】

CKDにおける肺炎球菌ワクチンの有効性を検討した論文は少ないが、上記のように心血管疾患死亡や生命予後の改善効果を期待でき、免疫原性からも接種が推奨されている^{12,14)}。 CKD 患者は腎障害だけでなく、高齢、免疫抑制薬使用、糖尿病・慢性呼吸器疾患・慢性心血管疾患の合併などの肺炎球菌性肺炎の予後不良因子を多数抱えていることがあり、その点からも肺炎球菌ワクチンの接種は必要であると考えられる。

米国では、50歳~64歳も肺炎球菌感染症のリスク因子を持つ人が多く、IPDの発症や入院のリスクが高いので、50歳以上に PCV20 あるいは PCV15-PPSV23 の連続接種が推奨された 15)。19歳~49歳の慢性腎不全やネフローゼ症候群に対しても、PCV20 あるいは PCV15-PPSV23 の連続接種が推奨されている 15)。

日本でも 65 歳以上に PCV20 の 1 回接種あるいは、PCV15 接種後に PPSV23 を接種する連続接種のいずれかが推奨されており 16)、65 歳未満の CKD 患者にも同様の接種が推奨される。

<u>ドイツにおいても年齢による接種対象は 60 歳以上となり、PCV20 が推奨され、18 歳以上の慢性腎不全及びネフローゼ症候群を含む免疫不全者も PCV20 が推奨された 17)。過去に PCV13/PCV15-PPSV23 の連続接種または PPSV23 の接種を受けた者は、PPSV23 接種6 年後以降に、PCV20 を接種することになった 17)。</u>

英国ではネフローゼ症候群、ステージ4及び5のCKD、透析患者、腎移植患者ではPPSV23の接種が推奨されており、未接種例には PCV13 または PCV15 を 1 回接種し、PPV23 を

PCV 投与から 2 年後、少なくとも 8 週あけての接種を推奨している (当時、PCV20 は英国の予防接種プログラムに入っていなかった) 18)。

国によってワクチンの接種法が微妙に異なるのは、<u>ワクチンの承認状況、流行株の血清型の違い、</u>ワクチンの接種率の低下、費用対効果、連続接種の有効性などについて国ごとに判断が異なるからである。

引用文献

- Thomson D, et al. Chronic kidney disease and vaccinations-A practical guide for primary care providers. J Natl Med Assoc 2022;114(3s2):S20-s24. doi: 10.1016/j.jnma.2022.05.003
- 正木崇生,他 わが国の慢性透析療法の現況(2023年12月31日現在).日本透析医学会雑誌 2024;57(12):543-620.
- 3. Ishigami J, et al. CKD and Risk for Hospitalization With Infection: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 2017;69(6):752-761. doi: 10.1053/j.ajkd.2016.09.018
- Igari H, et al. Epidemiology and treatment outcome of pneumonia: analysis based on Japan national database. J Infect Chemother 2020;26(1):58-62. doi: 10.1016/j.jiac.2019.07.001
- Viasus D, et al. Epidemiology, clinical features and outcomes of pneumonia in patients with chronic kidney disease. Nephrol Dial Transplant 2011;26(9):2899-2906. doi: 10.1093/ndt/gfq798
- 6. van Hoek AJ, *et al.* The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect 2012;65(1):17-24. doi: 10.1016/j.jinf.2012.02.017
- Liakou CD, et al. Safety, immunogenicity and kinetics of immune response to 7-valent pneumococcal conjugate vaccine in children with idiopathic nephrotic syndrome.
 Vaccine 2011;29(40):6834-6837. doi: 10.1016/j.vaccine.2011.07.053
- 8. Pittet LF, et al. Optimizing seroprotection against pneumococcus in children with nephrotic syndrome using the 13-valent pneumococcal conjugate vaccine. Vaccine 2016;34(41):4948-4954. doi: 10.1016/j.vaccine.2016.08.049
- 9. Vandecasteele SJ, et al. Immunogenicity and safety of the 13-valent Pneumococcal Conjugate vaccine in 23-valent pneumococcal polysaccharide vaccine-naive and pre-immunized patients under treatment with chronic haemodialysis: a longitudinal quasi-experimental phase IV study. Clin Microbiol Infect 2018;24(1):65-71. doi: 10.1016/j.cmi.2017.05.016

- Gilbertson DT, et al. The association of pneumococcal vaccination with hospitalization and mortality in hemodialysis patients. Nephrol Dial Transplant 2011;26(9):2934-2939. doi: 10.1093/ndt/gfq853
- 11. Bond TC, et al. Mortality of dialysis patients according to influenza and pneumococcal vaccination status. Am J Kidney Dis 2012;60(6):959-965. doi: 10.1053/j.ajkd.2012.04.018
- 12. Ihara H, et al. 23-valent pneumococcal polysaccharide vaccine improves survival in dialysis patients by preventing cardiac events. Vaccine 2019;37(43):6447-6453. doi: 10.1016/j.vaccine.2019.08.088
- Le D, et al. Pneumococcal vaccination effectiveness (PCV13 and PPSV23) in individuals with and without reduced kidney function: a test-negative design study. Clin Kidney J 2024;17(6):sfae145. doi: 10.1093/ckj/sfae145
- 14. 日本腎臓学会. エビデンスに基づく CKD 診療ガイドライン 2018. https://cdn.jsn.or.jp/data/CKD2018.pdf. Accessed Aug 17, 2023.
- 15. Kobayashi M, *et al.* Expanded recommendations for use of pneumococcal conjugate vaccines among adults aged ≥50 years: Recommendations of the Advisory Committee on Immunization Practices United States, 2024. MMWR Morb Mortal Wkly Rep 2025;74(1):1-8. doi: 10.15585/mmwr.mm7401a1
- 16. 感染症・結核学術部会ワクチン WG/日本感染症学会ワクチン委員会/日本ワクチン学会・合同委員会 日.65 歳以上の成人に対する肺炎球菌ワクチン接種に関する考え方 (第6版 2024年9月6日)
 - https://www.kansensho.or.jp/uploads/files/guidelines/o65haienV/o65haienV 240930.pdf . Accessed Feb 18, 2025.
- 17. Robert Koch Institut. Epidemiologisches Bulletin 23 of January 2025 No4.
 https://www.rki.de/DE/Aktuelles/Publikationen/Epidemiologisches-Bulletin/2025/04 25.pdf? blob=publicationFile&v=4. Accessed Feb 20, 2025.
- The Green book of immunisation: chapter 25 pneumoccocal. 23 of July 2023.
 https://assets.publishing.service.gov.uk/media/64d68d6edd15ff000d278019/Green Book Chapter 25 Pneumococcal 27 7 23.pdf. Accessed Feb 20, 2025.

6. 慢性肝疾患

【病態の特徴】

肝臓は腸内細菌・ウイルスなど微生物の曝露を受けるため、高度な免疫能を備えた臓器である。慢性肝疾患、ことに肝硬変では網内系機能の低下、タンパク合成の低下など肝臓の機能低下に加え、免疫担当細胞全般にわたって免疫応答が障害される 1)。門脈圧亢進症を合併した場合微生物が肝臓を通ることなく全身に広がる。こうした免疫応答の障害は肝硬変のステージが進むほど強くなる。C型肝炎の患者では感染の原因の一つとして事故・手術などによる脾摘の際の輸血が挙げられる。こうした患者は莢膜を有する細菌の感染があった場合重症化する。また、血小板低下症に対する治療としてPartial Splenic Embolization (PSE)を受ける患者は一般に進展した肝硬変を伴っている。

肝硬変患者が肺炎球菌感染症に罹患した場合、菌血症を伴いやすく敗血症性ショックになりやすいことが指摘されている²⁾。また、肺炎球菌は非代償性肝硬変患者の生命予後に大きな影響を及ぼす特発性細菌性腹膜炎の原因菌となることも報告されている³⁾。

【肺炎球菌感染症の発生頻度と予後】

日本の JMDC (Japan Medical Data Center) (2009~2014 年) からの解析によると、非侵襲性肺炎球菌性肺炎は $19\sim49$ 歳の年齢層で、基礎疾患のない症例の発生頻度 6.3 人/10万人・年に対し、慢性肝疾患の症例では 24.3 人/10万人・年(相対リスク (RR): 3.9)、 $50\sim64$ 歳の年齢層では、基礎疾患のない症例の発生頻度: 11.5 人/10万人・年に対し、慢性肝疾患の症例では 38.6 人/10万人・年 (RR: 3.2) と報告されている 40。また、侵襲性肺炎球菌感染症 (IPD) は $19\sim49$ 歳の年齢層で、基礎疾患のない症例の発生頻度: 0.3 人/10万人・年に対し、慢性肝疾患の症例では 1.0 人/10万人・年 (RR: 4.1)、 $50\sim64$ 歳の年齢層では、基礎疾患のない症例の発生頻度: 1.6 人/10万人・年に対し、慢性肝疾患の症例では 20.4 人/10万人・年 (RR: 11.9) と報告されている 40。

米国の Healthcare claims repositories (2006~2010 年) からの解析によると、非侵襲性肺炎球菌性肺炎は 18~49 歳の年齢層で、基礎疾患のない症例の発生頻度 14 人/10 万人・年に対し、慢性肝疾患の症例では 90 人/10 万人・年(RR: 6.4)、50~64 歳の年齢層では、基礎疾患のない症例の発生頻度: 25 人/10 万人・年に対し、慢性肝疾患の症例では 148 人/10 万人・年(RR: 5.8) と報告されている 5。また、IPD は 19~49 歳の年齢層では基礎疾患のない症例の発生頻度 1.8 人/10 万人・年に対し、慢性肝疾患の症例では 18.7 人/10 万人・年(RR: 10.2)、50~64 歳の年齢層では、基礎疾患のない症例の発生頻度: 4.5 人/10 万人・年に対し、慢性肝疾患の症例では 28.5 人/10 万人・年(RR: 6.4) と報告されている 5。 CDC からは 2013~2014 年の IPD の発生頻度が報告されており、19~64 歳の年齢層では、基礎疾患のない症例の発生頻度が 3.9 人/10 万人・年であったのに対し、慢性肝疾患の症例では 60.2 人/10 万人・年(RR: 15.4) であった 6。

英国の GP records (2002年~2009年) からの解析によると、脾摘、脾機能不全、慢性

肺疾患、慢性心疾患、慢性腎疾患、慢性肝疾患、免疫抑制状態、人工内耳、髄液瘻の中で、IPD の発生リスクは慢性肝疾患の症例で最も高かった 7。2~15 歳の年齢層で、基礎疾患のない症例の発生頻度: 3.9 人/10 万人・年に対し、慢性肝疾患の症例では 117 人/10 万人・年 (オッズ比 (OR): 29.6)、16~64 歳の年齢層では、基礎疾患のない症例の発生頻度 5.2 人/10 万人・年に対し、慢性肝疾患の症例では 172 人/10 万人・年 (OR: 33.3) と報告されている。また、IPD の死亡リスクは 2~15 歳の年齢層で、基礎疾患のない症例の死亡率 1.8%に対し慢性肝疾患の症例の死亡率は 11.1% (OR: 7.0)、16~64 歳の年齢層では、基礎疾患のない症例の死亡率 5.4%に対し慢性肝疾患の症例の死亡率は 26.1% (OR: 10.3) であった 70。

オーストラリアのビクトリア州で実施された集団ベースのサーベイランス(2001~2017年)によると C 型肝炎の症例は IPD 全体の 5.3%を占め、特に 45~49 歳の年齢層では IPD の 24.4%を占めていた 8)。 なお、C 型肝炎の症例において PCV13 の血清型による IPD は 55.3%、PPSV23 の血清型による IPD は 82.8%であった。年間の発生率は C 型肝炎以外の症例で 6.8 人/100,000 人・年に対し、C 型肝炎の症例は 39.4 人/10 万人・年(罹患率比 (IRR): 5.8) であった 8)。

これらの報告から、65 歳未満の慢性肝疾患を基礎疾患に有する症例の肺炎球菌感染症の 発生リスク、死亡リスクはともに高く、肺炎球菌ワクチンによる予防が必要である。

【肺炎球菌ワクチンの免疫原性】

1) 肝硬変

肝硬変のなかでも臓器全体の機能に影響が及ぶのは主として Child-Pugh 分類で Grade B 以上の症例である。1980 年代に 15 例のアルコール性肝硬変群、10 例の COPD 群、10 例の健常者群、計 35 例を対象に、肺炎球菌莢膜多糖体ワクチンの免疫原性が評価されている 9。全例に 14 価肺炎球菌莢膜多糖体ワクチン (PPSV23 の前型) を接種し、接種前、接種 4 週後、12 週後の免疫反応(1 型、4 型、7F型、8 型、18C型に対する IgG、IgM、IgA を RIA を用いて測定)が比較された。その結果、ワクチン接種によってアルコール性肝硬変群でも健常者群と同等の抗体価の上昇が示された。また、アルコール性肝硬変群と健常者群で、ワクチン接種後の抗体価に有意な差は認められず、アルコール性肝硬変の症例に対しても莢膜多糖体型ワクチンで免疫が付与できることが示されている 9。

2) 肝移植

肝疾患の終末期には肝移植が治療の選択肢となる。肝移植待機者は末期肝不全による免疫低下状態であり、肝移植後は免疫抑制薬の使用によって免疫全般、ことに細胞性免疫が障害される。肝移植後の症例に関して、①ELISA を用いて PPSV23 の免疫原性(血清型特異的 IgG、IgM、IgA)を評価した 1 編の非ランダム化比較試験(non-RCT) 100、②ELISA とフローサイトメトリーを用いて PCV7/PPSV23 群と PPSV23 群の免疫原性(特異的 IgG 濃

度、OPA)を比較した 1 編の $RCT^{11)}$ 、③肝移植前に PPSV23 を接種した群と、肝移植前に PCV13、肝移植から 6 か月後に PCV13 を接種した群の免疫原性(ELISA、OPA)を比較した $RCT^{12)}$ の計 3 報が報告されている。

- ① 45 例の肝移植群と 13 例のコントロール群、計 58 例を対象とした non-RCT では、全 例に PPSV23 を接種し、3 型と 23 型の免疫応答(ELISA を用いた IgG、IgM、IgA)が測 定された。その結果、肝移植群で IgG は有意に低く、IgM と IgA は早期の減衰が確認された 10 。
- ② 肝移植後の 113 例を対象とした RCT では、PCV7/PPSV23 群(PCV7 を接種後、8 週間あけて PPSV23 を接種)と、PPSV23 群(プラセボを接種後、8 週間あけて PPSV23 を接種)の 2 群で PCV7 含有血清型の特異的 IgG 濃度と OPA が比較されたが、特異的 IgG、OPA ともに両群で有意な差は認められず、同等であった ¹¹⁾。
- ③ 17 例の肝移植前に PPSV23 を接種した群 (PPSV23 群) と 19 例の肝移植前に PCV13、 肝移植から 6 か月後に PCV13 を接種した群 (PCV13/PCV13 群) を比較した計 36 例の RCT では、移植前の接種 1 か月後の時点で PCV13/PCV13 群の方が PPSV23 群よりも ELISA に関して 6A、7F、23F、OPA に関して 4、6A、6B、23F で有意な上昇を認めたが、 肝移植から 6 か月後には両群ともにワクチン効果はベースラインまで減衰し、カットオフ値 (ELISA cut-off \geq 1.0 μ g/mL,OPA \geq 8) を超えた症例の割合は同等であった 12 。 なお、 PCV13/PCV13 群では肝移植から 6 か月後に PCV13 を接種することで、接種 1 か月後には免疫原性が回復したことが報告されている。

【ワクチン予防効果】

現在のところ慢性肝疾患の症例を対象とした肺炎球菌ワクチンの予防効果は報告されていない。

【肺炎球菌ワクチンの接種推奨の要点】

- 1) 65 歳未満において、慢性肝疾患、特に肝硬変の症例は肺炎球菌感染症の発症頻度、死亡率が高いため、ハイリスク者として <u>PCV20 の単回接種または PCV15-PPSV23 による連続接種を検討することが望ましい。</u>
- 肝移植患者は免疫抑制状態の症例に分類され、PCV20 の単回接種または PCV15-PPSV23 による連続接種が推奨される ¹³⁾。
- 3) 現在のところ慢性肝疾患(肝移植患者を含む)を対象とした <u>PCV20 の単回接種または</u> <u>PCV15-PPSV23</u> の連続接種の <u>PPSV23</u> 単回接種に対する有意な免疫原性、<u>臨床的な</u> 予防効果は報告されておらず、今後の検討が必要である。

引用文献

- 1. Albillos A, *et al.* Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014;61(6):1385-1396. doi: 10.1016/j.jhep.2014.08.010
- Viasus D, et al. Community-acquired pneumonia in patients with liver cirrhosis: clinical features, outcomes, and usefulness of severity scores. Medicine (Baltimore) 2011;90(2):110-118. doi: 10.1097/MD.0b013e318210504c
- Kim T, et al. Clinical features and outcomes of spontaneous bacterial peritonitis caused by streptococcus pneumoniae: a matched case-control study. Medicine (Baltimore) 2016;95(22):e3796. doi: 10.1097/md.0000000000003796
- Imai K, et al. Risk of pneumococcal diseases in adults with underlying medical conditions: a retrospective, cohort study using two Japanese healthcare databases. BMJ Open 2018;8(3):e018553. doi: 10.1136/bmjopen-2017-018553
- Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024
- 6. Ahmed SS, et al. Early impact of 13-valent pneumococcal conjugate vaccine use on invasive pneumococcal disease among adults with and without underlying medical conditions-United States. Clin Infect Dis 2020;70(12):2484-2492. doi: 10.1093/cid/ciz739
- van Hoek AJ, et al. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect 2012;65(1):17-24. doi: 10.1016/j.jinf.2012.02.017
- 8. Gibney KB, et al. Incidence of invasive pneumococcal disease higher among people notified with markers of hepatitis C virus infection: population-based surveillance in victoria, Australia, 2001-2017. Clin Infect Dis 2021;72(9):e319-e325. doi: 10.1093/cid/ciaa1110
- 9. Pirovino M, et al. Pneumococcal vaccination: the response of patients with alcoholic liver cirrhosis. Hepatology 1984;4(5):946-949. doi: 10.1002/hep.1840040527
- 10. McCashland TM, et al. Pneumococcal vaccine response in cirrhosis and liver transplantation. J Infect Dis 2000;181(2):757-760. doi: 10.1086/315245
- Kumar D, et al. A randomized, double-blind, placebo-controlled trial to evaluate the prime-boost strategy for pneumococcal vaccination in adult liver transplant recipients. Clin Infect Dis 2008;47(7):885-892. doi: 10.1086/591537
- 12. Eriksson M, et al. A randomized, controlled trial comparing the immunogenicity and safety of a 23-valent pneumococcal polysaccharide vaccination to a repeated dose 13-valent pneumococcal conjugate vaccination in adult liver transplant recipients. Vaccine 2021;39(17):2351-2359. doi: 10.1016/j.vaccine.2021.03.063

13. Kobayashi M, et al. Pneumococcal vaccine for adults aged ≥19 years: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023;72(3):1-39. doi: 10.15585/mmwr.rr7203a1

7. 糖尿病

【病態の特徴】

糖尿病患者では、高血糖に伴う好中球やマクロファージ機能の低下、血管内皮機能や凝固異常、神経障害、栄養障害など多くの因子が易感染性に関わっている。また重症感染症においては、炎症性サイトカインやインスリン拮抗ホルモンの上昇によって、インスリン抵抗性が増強、高血糖が増悪し、さらに感染症が重症化する。

カナダにおいて実施された糖尿病患者と非糖尿病患者各513,749例を比較した後方視的コホート研究では、糖尿病患者の感染発症リスクは1.21倍で、感染症関連の入院リスクは2.17倍、感染症による死亡リスクは1.92倍であった¹⁾。オーストラリアにおいて実施された糖尿病患者1,294例と非糖尿病患者各5,156例を比較した観察研究(平均12年間)では、糖尿病患者の感染症関連入院の独立したリスク因子が高齢、男性、感染症関連入院の既往、肥満、アルブミン尿、網膜症、先住民であった²⁾。その他、多くの大規模研究で糖尿病患者は非糖尿病患者と比較してさまざまなリスク(感染症発症、入院、重症化、死亡など)が上昇することが判明している。

【肺炎球菌感染症の発生頻度と予後】

日本糖尿病学会によるわが国の糖尿病患者の死因に関するアンケート調査($2011\sim2020$ 年、68,555例)では、感染症による死亡は第2位(17.0% vs 非糖尿病 14.5%, p<0.001)で、中でも肺炎の頻度が最も高く11.4% (vs 非糖尿病 14.5%, p<0.001)、結核0.1%、その他5.4%であった3。

糖尿病患者における市中肺炎発症のリスクは、コホート研究でハザード比(HR) $1.0\sim1.9$ 、rate ratio $1.6\sim3.1$ 、症例・対照研究でオッズ比(OR) $1.0\sim1.4$ 、HR 1.1と報告されている $4\cdot6$)。

わが国の市中肺炎ならびに医療・介護関連肺炎の原因微生物で最も頻度の高いのは肺炎球菌であるが、<u>オーストラリアの</u>糖尿病患者における<u>菌血症を伴う</u>肺炎球菌性肺炎発症のリスクは、補正相対リスク(RR)が2.3(95%信頼区間(CI)1.55-2.65)と報告されているつ。年齢別に検討した後方視的コホート研究では、英国でrate ratiosが60歳未満で2.03(95%CI 1.55-2.65)、60歳以上で1.54(95%CI 1.32-1.79)の報告4)と、米国でrate ratioが18~49歳で3.1(95%CI 2.9-3.3)、50~64歳で3.0(95%CI 2.6-3.1)、65歳以上で2.8(95%CI 2.7-2.9)との報告がある5。

糖尿病患者における侵襲性肺炎球菌感染症 (IPD) の発症リスクを検討した研究を以下にまとめた。

- ① 米国の18歳以上を対象とした集団ベースのサーベイランス研究で補正OR 1.4 (95%CI 1.0-2.0) ⁸⁾
- ② スウェーデンの18歳以上を対象とした症例・対象研究でOR 1.7 (95%CI 1.5-1.9) 9
- ③ 英国の後方視的コホート研究でrate ratiosが60歳未満で2.06 (95%CI 1.33-3.14)、60歳以上で1.50 (95%CI 1.12-2.01) 4)
- ④ 米国の後方視的コホート研究でrate ratiosが18~49歳で3.0(95%CI 2.4-3.7)、50~64歳で2.6(95%CI 2.3-2.9)、65歳以上で2.5(95%CI 2.2-2.9) ⁵⁾
- ⑤ IPDで入院した患者におけるリスク因子の疫学検討ではORが16~64歳で4.6 (95%CI 4.2·5.0)、65歳以上で2.3 (95%CI 2.2·2.5) ¹⁰⁾
- ⑥ 米国の18歳以上を対象とした症例・対象前方視研究でORが単変量解析で1.7 (95%CI 1.0-2.9)、多変量解析で1.5 (95%CI 0.8-2.6) ¹¹⁾
- (7) 英国の2つの後方視的コホート研究でrate ratioがOxford Record Linkage Study 2で3.30 (95%CI 2.07-5.07)、英国で3.90 (95%CI 3.55-4.28) 12)
- ※ 米国の後方視的コホート研究でrate ratiosが18歳未満で2.3 (95%CI 0.9-5.5)、18~64歳で3.5 (95%CI 3.2-3.9)、65歳以上で2.5 (95%CI 2.2-2.9) ¹³⁾
- ⑨ 血糖コントロール不良の場合、肺炎球菌性肺炎による入院が増加する14。

【肺炎球菌ワクチンの免疫原性】

糖尿病患者を対象とした肺炎球菌ワクチンの免疫原性を評価した研究は、きわめて限られている。PPSV23に関しては唯一、わが国の高齢者糖尿病患者で抗体濃度の推移を検討した報告がある 15 。13人のPPSV23接種前後の肺炎球菌莢膜特異的IgG濃度の変化を同時期のPPSV23非接種者と比較したところ、検討した14種類(1、3、4、5、6B、7F、8、9N、9V、12F、14、18C、19F、23F)すべての血清型に対してワクチン接種後に有意な特異的IgG濃度の上昇がみられた。

PCV13接種1か月後の基礎疾患別の血清型特異的IgGおよびOPAの幾何学的平均値(GMT)を検討した研究では、糖尿病患者を含め健常者、心疾患患者、呼吸器疾患患者、喘息患者、2つ以上の基礎疾患保有患者など、すべての対象者において13の血清型(1、3、4、5、6A、6B、7F、9V、14、18C、19A、19F、23F)の有意な抗体濃度上昇がみられた16。たとえば血清型1では、ワクチン接種前のOPA GMTが10(95%CI 9.5-11.5)に対し1か月後には91(95%CI 68.4-121.4)、12か月後には30(95%CI 23.6-38.6)、24か月後には19(95%CI 15.7-23.7)と、健常者と同じ値で推移していた。

PCV15接種後1か月後のリスク因子のある18~49歳成人を対象に血清型特異的IgGの幾何平均抗体濃度 (GMC) およびOPA の幾何平均抗体価 (GMT) を検討した研究では、糖尿病患者を含め喫煙者、アルコール多飲者、慢性肺疾患患者、慢性心疾患患者、慢性肝疾患

患者、2つ以上のリスク因子保有者など、すべての対象者において15の血清型(1、3、4、5、6A、6B、7F、9V、14、18C、19A、19F、22F、23F、33F)の有意な抗体濃度上昇がみられた17。本研究では、6か月間隔でのPCV15-PPSV23連続接種の免疫原性も検討しており、PPSV23接種1か月後に15血清型のIgG GMCおよびOPA GMTの上昇が確認されている。60歳以上の罹患リスク保有者(糖尿病が25%)を対象としたPCV20とPCV13/PPSV23の比較試験では、1か月後のOPA GMT は大幅な上昇が認められ、13 共通血清型に対するOPA 幾何平均上昇倍率(GMFR)は、PCV20群と PCV13/PPSV23 群とで概ね同様で、7追加血清型に対するOPA GMFR は、血清型8を除きPCV20群がPCV13/PPSV23 群より高い傾向であった18。血清型8に対するPCV20群のOPA GMFRは罹患リスクを有する集団で18.1、罹患リスクなしの集団で17.7であり、罹患リスクの有無に関わらず、PCV13/PPSV23 群における全血清型に対するOPA GMFRの範囲内であった。

【ワクチンの予防効果】

イタリアのロンバルディア州医療システムデータベースから、糖尿病患者618,396人および非糖尿病被験者9,534,087人を対象に、肺炎球菌ワクチンの効果を検討した報告では、糖尿病患者における死亡率、全入院および心肺関連入院で、ワクチン未接種群と比較してワクチン接種群での改善は認められず、入院率に関してはワクチン接種群でわずかに増加した19。肺炎球菌ワクチンの有効性が低い理由として、肺疾患のheterogeneityと、高齢者層でのワクチン接種率が相対的に低かったためと考えられる。

肺炎球菌疾患の発症と関連合併症のリスク因子としての糖尿病の影響、および糖尿病患者におけるワクチンの有効性/有用性に関しての10件の観察研究のメタ解析(8件がPPSV23、1件がPCV13、1件は両ワクチンを含む)では、糖尿病患者はIPD、死亡率、肺炎球菌性肺炎、および肺炎球菌性疾患によるICU入室のリスクが高かった200。また、糖尿病患者でのPCV接種群は非接種群に比べ、臨床試験ではワクチン含有血清型による肺炎の発生率が、観察研究ではワクチン接種後1年間の全肺炎による入院率が有意に低く、その他の指標では有意差は認められなかった。

成人糖尿病患者における入院および全死亡リスクに対する肺炎球菌ワクチン接種の影響を検討した系統的レビューでは、2,738試験から2試験が採用され、両試験共にPPSV23接種は成人糖尿病患者の入院または死亡のリスク低下と関連していたが統計学的に有意ではなかった²¹⁾。

【肺炎球菌ワクチンの接種推奨の要点】

- ・ わが国における高齢者を対象とした研究において PPSV23 接種による肺炎球菌性肺炎 および IPD の予防効果が示されている ^{22,23)}。一方、糖尿病患者においては上述のとお り肺炎球菌ワクチンの効果に関する一定の見解が得られていない。
- しかしながら、糖尿病の存在によって市中肺炎発症リスク、肺炎球菌性肺炎発症リスク、

IPD リスクが上昇することが複数の研究から示唆されている。また、糖尿病患者における PPSV23 および PCV13/PCV15/PCV20 接種による特異抗体価の上昇が実証されていることから、糖尿病患者を対象とした肺炎球菌ワクチン接種による肺炎発症抑制効果が期待される。

- 65 歳未満の糖尿病患者に対して <u>PCV20 単回接種および PCV15-PPSV23 の連続接種</u> も選択肢と考えられる。
- ・ 糖尿病患者における肺炎球菌ワクチン接種の推奨年代に関しては今後の研究結果が待 たれるところである。

引用文献

- Shah BR, et al. Quantifying the risk of infectious diseases for people with diabetes.
 Diabetes Care 2003;26(2):510-513. doi: 10.2337/diacare.26.2.510
- 2. Hamilton EJ, et al. Incidence and predictors of hospitalization for bacterial infection in community-based patients with type 2 diabetes: the fremantle diabetes study. PLoS One 2013;8(3):e60502. doi: 10.1371/journal.pone.0060502
- 3. 中村二郎, 他. アンケート調査による日本人糖尿病の死因 2011~2020年の10年間,68,555名での検討. 糖尿病 2024;67(2):106-128
- Seminog OO, et al. Risk of pneumonia and pneumococcal disease in people hospitalized with diabetes mellitus: English record-linkage studies. Diabet Med 2013;30(12):1412-1419. doi: 10.1111/dme.12260
- 5. Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024
- Vinogradova Y, et al. Identification of new risk factors for pneumonia: population-based case-control study. Br J Gen Pract 2009;59(567):e329-338. doi: 10.3399/bjgp09X472629
- 7. Jacups SP, et al. The epidemiology of community acquired bacteremic pneumonia, due to Streptococcus pneumoniae, in the Top End of the Northern Territory, Australia-over 22 years. Vaccine 2011;29(33):5386-5392. doi: 10.1016/j.vaccine.2011.05.082
- 8. Flory JH, et al. Socioeconomic risk factors for bacteraemic pneumococcal pneumonia in adults. Epidemiol Infect 2009;137(5):717-726. doi: 10.1017/s0950268808001489
- 9. Inghammar M, et al. Invasive pneumococcal disease in patients with an underlying pulmonary disorder. Clin Microbiol Infect 2013;19(12):1148-1154. doi: 10.1111/1469-0691.12182
- van Hoek AJ, et al. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J Infect 2012;65(1):17-24. doi: 10.1016/j.jinf.2012.02.017

- 11. Watt JP, et al. Risk factors for invasive pneumococcal disease among Navajo adults. Am J Epidemiol 2007;166(9):1080-1087. doi: 10.1093/aje/kwm178
- 12. Wotton CJ, *et al.* Risk of invasive pneumococcal disease in people admitted to hospital with selected immune-mediated diseases: record linkage cohort analyses. J Epidemiol Community Health 2012;66(12):1177-1181. doi: 10.1136/jech-2011-200168
- 13. Weycker D, *et al.* Rates and costs of invasive pneumococcal disease and pneumonia in persons with underlying medical conditions. BMC Health Serv Res 2016;16:182. doi: 10.1186/s12913-016-1432-4
- Rueda AM, et al. Hyperglycemia in diabetics and non-diabetics: effect on the risk for and severity of pneumococcal pneumonia. J Infect 2010;60(2):99-105. doi: 10.1016/j.jinf.2009.12.003
- 15. 小島原典子, 他. 高齢糖尿病患者における肺炎球菌ワクチン接種による抗体濃度の推移. 感染症学雑誌 2007;81(5):602-606. doi: 10.11150/kansenshogakuzassi1970.81.602
- 16. van Deursen AMM, et al. Immunogenicity of the 13-Valent Pneumococcal Conjugate Vaccine in Older Adults With and Without Comorbidities in the Community-Acquired Pneumonia Immunization Trial in Adults (CAPiTA). Clin Infect Dis 2017;65(5):787-795. doi: 10.1093/cid/cix419
- 17. Hammitt LL, et al. Phase 3 trial to evaluate the safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, followed by 23-valent pneumococcal polysaccharide vaccine 6 months later, in at-risk adults 18-49 years of age (PNEU-DAY): A subgroup analysis by baseline risk factors. Hum Vaccin Immunother 2023;19(1):2177066. doi: 10.1080/21645515.2023.2177066
- 18. 独立行政法人医薬品医療機器総合機構. プレベナー20 水性懸濁注 審査報告書. https://www.pmda.go.jp/drugs/2024/P20240829003/672212000 30600AMX00115 A100_2.pdf. Accessed Jan 30, 2025.
- D'Addio F, et al. Vaccinome landscape in nearly 620,000 patients with diabetes. J Clin Endocrinol Metab 2024. doi: 10.1210/clinem/dgae476
- 20. Silverii GA, et al. Diabetes as a risk factor for pneumococcal disease and severe related outcomes and efficacy/effectiveness of vaccination in diabetic population. Results from meta-analysis of observational studies. Acta Diabetol 2024;61(8):1029-1039. doi: 10.1007/s00592-024-02282-5
- Del Riccio M, et al. Effectiveness of pneumococcal vaccination on hospitalization and death in the adult and older adult diabetic population: a systematic review. Expert Rev Vaccines 2023;22(1):1179-1184. doi: 10.1080/14760584.2023.2286374
- 22. Suzuki M, et al. Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged 65 years or

- older: a multicentre, prospective, test-negative design study. Lancet Infect Dis 2017;17(3):313-321. doi: 10.1016/s1473-3099(17)30049-x
- 23. Shimbashi R, *et al.* Effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease in adults, Japan, 2013-2017. Emerg Infect Dis 2020;26(10):2378-2386. doi: 10.3201/eid2610.191531

8. 自己免疫性疾患

【病態の特徴】

関節リウマチ(rheumatoid arthritis, RA)は、複数の遺伝的要因と環境要因が発症に関与している自己免疫疾患の一つであり、国内の患者数は $70\sim90$ 万人と推計されている。関節リウマチは 40-60 歳台が発症のピークがあるのに対して、他の膠原病では発症年齢は相対的に低い(全身性エリテマトーデス(systemic lupus erythematosus, SLE)20-30 代、多発性筋炎/皮膚筋炎 40-50 代、強皮症 30-50 代)1-20。RA では手指関節をはじめとして多関節に滑膜炎を来たし、無治療の場合は関節破壊・変形をきたす。関節外症状として間質性肺炎や血管炎に伴う臓器病変を認めることもある。血液検査では、炎症反応の上昇に加え、RA に特異的な抗 CCP 抗体が検出される事が多い。RA の診断は関節症状・所見に加え、これら検査値異常などの項目からなる アメリカリウマチ学会/ヨーロッパリウマチ学会 (ACR/EULAR) の RA 分類基準でなされ、RA の活発性評価には DAS-28 などの複合的指標が用いられる。

RA の治療は目標達成に向けた治療(Treat-to-Target: T2T)の考えに基づいて、 $1\sim3$ か月ごとに RA の疾患活動性を評価し、寛解あるいは低疾患活動性を目標にして、主に日本リウマチ学会の治療ガイドラインに準じて行われる。まず治療の最初の段階(フェーズ 1)ではメトトレキサート(MTX)に代表される従来型合成抗リウマチ薬(csDMARDs)で治療を開始する。治療目的を達成できない場合は次の段階として(フェーズ 2)、生物学的製剤(bDMARDs)、あるいは分子標的型合成抗リウマチ薬(tsDMARDs)である JAK 阻害薬を用いて治療を行うことが推奨されている 3)。

【肺炎球菌感染症の発生頻度と予後】

自己免疫疾患においては疾患自体の免疫異常ならびに使用中の免疫抑制薬の影響のために様々な感染症のリスクが高く、予防可能な感染症に対するワクチン接種が推奨されている。特に肺炎球菌性肺炎および侵襲性肺炎球菌感染症(IPD)は一般人口と比較しての発症率が高く 1)、肺炎球菌ワクチンの接種が推奨されている。米国の診療レセプトデータを用いた報告では肺炎球菌性肺炎の罹患率比(IRR)は健常人と比較して RA、SLE でそれぞれ4.4、4.3 と高値であった 4)。オランダの SLE 患者における研究では一般人口と比較して IPD の発症率が 13 倍高いと報告されている 5)。また SLE 患者における同様の検討では、一般

人口と比較して肺炎球菌関連感染症に関連した死亡率が高かった 6)。

【肺炎球菌ワクチンの免疫原性】

自己免疫疾患患者に対するワクチン接種の際には、疾患自体の免疫異常と使用中の免疫抑制療法によるワクチンの免疫原性に対する影響に注意が必要である。理想的には自己免疫疾患患者に対するワクチン接種は免疫抑制療法の開始前に行われることが望ましいとされている ⑦。特に rituximab (RTX)による B 細胞除去療法に関してはワクチン接種による抗体価の上昇を強力に抑制するとされており、ワクチン接種時期を慎重に決定すべきである ⑤。しかし原疾患の症状が強い場合、ワクチン接種の施行のために免疫抑制療法が遅れるべきではないとされており ⑦、実臨床では原疾患の症状が強く免疫抑制療法をワクチン接種前に行わなければならず、免疫抑制薬投与下にワクチン接種を行うケースも多く、そのような場合でもワクチン接種による細胞性免疫への賦活効果は維持されることがある。実地臨床家は免疫抑制薬によるワクチンの免疫原性への影響を熟知している必要がある。

PPSV23 の免疫原性に関しては、RA や SLE の報告で十分な免疫応答が報告されている 8)。また、自己免疫疾患における各免疫抑制薬による PPSV23 の免疫原性に対する影響も多くの検討がなされている。2019 年に systematic literature review®が行われており、少量から中等量のグルココルチコイド(GC;プレドニゾロン換算 20mg/日以下)や TNF 阻害剤、抗 IL-6 受容体抗体である tocilizumab(TCZ)は PPSV23 の免疫原性への影響は少ないとし、メトトレキサート(MTX)は PPSV23 の免疫原性を減弱するとしている。また T細胞活性化阻害剤である abatacept(ABT)は免疫原性を軽度減弱させる可能性があるとされている。また近年使用頻度が増えている JAK 阻害剤(tofacitinib)に関しては、RA 患者に対して tofacitinib 20mg/日を投与開始 4 週間経過した時点で PPSV23 を接種し、PPSV23 接種 5 週間後に 12 種類の肺炎球菌血清型に対する特異的 IgG 抗体価が評価されているが、十分な効果(6 種類以上の血清型について 2 倍以上の抗体価の上昇)がみられた割合は tofacitinib 投与群では 45%(tofacitinib 非投与群 68.4%)と低く、特に MTX 併用群では 31.6%とその傾向が顕著であったと報告されている 10)。さらに、自己免疫疾患患者への PPSV23 の接種において、5 年以内の再接種の場合や MTX 投与中の場合には有意な抗体価が得られていないとする報告もみられる 11)。

一方、単施設で実施された後ろ向きコホート研究であるが、PPSV23 接種歴のある炎症性関節炎患者(74%が RA 患者)の長期的な免疫原性を評価し、PPSV23 接種から免疫原性評価までの期間を5年以下、5~10年、10年以上に分類し、抗体価の持続性を評価した結果、時間の経過に伴う抗体価の低下は認められなかったと報告されている120。なお、PPSV23が16試験、PCV13が2試験、PCV7が1試験、PCV13+PPSV23が1試験の合計20編が解析された最近のメタアナリシスで、ABT、TCZ、TNF阻害剤、JAK阻害剤の単回療法が免疫原性を減少させるという所見は示されていないが、MTX(単剤/併用)とRTX は免疫原性を低下させることも報告された130。

PCV13 の免疫原性に関しても十分な免疫応答が報告されている 14。免疫抑制薬の PCV13 の免疫原性への影響は PPSV23 と比較して少数であるが検討されている。MTX が使用され ている RA 患者において PCV13 接種 4 週間後に 2 つの莢膜多糖体抗原 (6B、23F) に対す る抗体価が検討されているが、十分な抗体価の上昇(接種前の抗体価と比較して 2 倍以上 の上昇) がみられた患者の割合は 10% (MTX 未投与群 40%) であった ¹⁵。また別の検討 では、TNF 阻害剤による PCV13 の免疫原性に対する影響は少ないとされている 🕫 ABT、 TCZ 投与中の RA 患者における検討では、TCZ ではコントロール群(NSAIDs が使用され ている脊椎関節炎患者)と比較して同等の抗体価の増加を認めたのに対して、ABT 投与下 では抗体価の上昇が減弱している ¹⁷⁾。また JAK 阻害剤に関しては baricitinib 投与中の RA 患者 (89%の症例が MTX を併用されている) の検討では 68%の症例で PCV13 接種 5 週間 後十分な反応がみられたとされている 18)。また tofacitinib 投与中の乾癬性関節炎の患者の 検討では十分な抗体価の上昇がみられている 19)。最近では国内から、JAK 阻害剤、MTX、 JAK 阻害剤と MTX の両方を使用している患者において、抗体陽性率がそれぞれ 95%、 90%、52.2%であり、JAK 阻害剤と MTX の併用群では有意に抗体価の上昇が阻害された ことが報告された 20。 さらに upadacitinib (JAK 阻害剤) と MTX を併用している RA 患 者における PCV13 の免疫原性を評価した第Ⅱ相非盲検延長試験で upadacitinib 15 mg 群 <u>の 67.5%および upadacitinib 30mg 群の 56.5%の患者で十分な免疫原性が得られ、44.1%</u> の患者で併用されていた GC による影響は認められなかった ²¹⁾。

PCV15 の安全性と免疫原性を比較した第 III 相、多施設プラセボ対照二重盲検比較試験 ²²⁾では、自己免疫疾患の患者は含まれておらず、今後の国内外での自己免疫疾患患者での免疫原性のデータの蓄積が待たれる。

近年 PCV13-PPSV23 の連続接種がさまざまな免疫不全患者に推奨されているが、一般集団や HIV 患者を対象にした検討を基にしたエキスパートオピニオンであり、自己免疫疾患における連続接種のエビデンスは不十分である。しかし 2017 年の報告では csDMARDS (MTX 投与例が 91%)、bDMARDs (RTX、TNF 阻害剤、IL-6 受容体拮抗薬、ABT を含む)を使用中の RA 患者に PCV13-PPSV23 の連続接種を行い 4 週間後の 12 の莢膜多糖類抗原 (1、3、4、5、6B、7F、9V、14、18C、19A、19F、23F) に対する抗体価を評価しているが、それぞれ 87%と 94%の患者で十分な反応(6 つ以上の抗原に対する抗体価がベースラインから 4 倍以上の上昇もしくは 0.35 mg/L 以上に上昇)がみられたとしている ²³。 さらに 2020 年には、RTX、ABT、csDMARDs 使用中の RA 患者において PCV-PPSV23 連続接種群と PCV 単独接種群の接種 4~8 週間後の抗体価の評価が行われ、PCV 単独接種群と比較して連続接種群の場合、ABT、csDMARDs、コントール群では十分に抗体価が上昇した抗原数が有意に多かったとされ自己免疫疾患における連続接種の有効性が示されている ²⁴。 また、18 歳以上の自己免疫疾患患者における PCV13-PPSV23 連続接種 4 週後の共通血清型に対する OPA を評価し、使用薬剤別、疾患別で見た結果、全体のほぼ 50%において十分な機能的抗体を獲得していたと報告された ²⁵。

一方で RA や乾癬などを含む免疫抑制薬が投与されている患者での PCV13・PPSV23 の 通常の連続接種では 12 か月後の抗体価低下が顕著であるため、PCV13 の用量追加やさら に広い血清型を含むワクチンの必要性を示唆する報告 26)や SLE 患者の PCV13・PPSV23 の 連続接種では PPSV23・PCV13 の連続接種に比べてより高い抗体価が得られたとする報告 もみられた 27)。 SLE 患者における PCV13・PPSV23 連続接種 36 か月後までの免疫原性を評価し、接種後 36 か月で一定基準の免疫応答を示したのは 21 人中 10 人であり、11 人は長期の免疫応答が認められず、肺炎球菌ワクチンの連続接種による SLE 患者の免疫的な効果は不十分だったとする報告 28)や、RA 患者における PCV13・PPSV23 連続接種 24 か月後までの共通血清型、PPSV23 固有の血清型に対する免疫原性(IgG、OPA)を評価し、IgGにおいては 4 か月後、12 か月後、24 か月後で同程度の抗体獲得率が認められたが、OPAでは接種後 24 か月後には減少していたとする報告もある 29)。肺炎球菌ワクチンの連続接種によって短期的には良好な予防効果をもたらすが、この予防効果は 2 年以上持続せず、機能的抗体のレベルは接種前のレベル以下に低下する可能性も示唆された。

なお、2022 年 1 月に米国 CDC は 65 歳以上の全ての成人に加えて、PCV を未接種あるいは接種歴が不明な $19\sim64$ 歳の慢性疾病のある成人に対して、PCV15-PPSV23 の連続接種または PCV20 の接種を推奨した 30)。 PCV20 の臨床試験では自己免疫性疾患を有する患者のエントリーは確認されていないが 31,32)、対象疾患には長期間の GC 剤を含む免疫抑制療法が必要な疾患も含まれている。 さらに米国 CDC は今後接種年齢を 50 歳に引き下げることを提案した上で、自己免疫性疾患を含めたハイリスク患者に対して PCV20 およびPCV21 (日本未承認)を主に推奨するとした 33)。

また、最近国内から報告された 65 歳以上を対象とした PCV13-PPSV23 の連続接種の間隔が半年と 1 年の場合の比較研究では、副反応の頻度には差はなく、半年より 1 年の接種間隔のほうがより高いブースター効果を獲得できることが示されている 34)。

一方で米国では、免疫抑制薬が必要な自己免疫疾患を含むハイリスク患者は PCV13 接種後 8 週以後の PPSV23 接種が推奨されており 300、感染リスクを考慮して PCV15 接種後 1 年以内の PPSV23 接種を検討することも考えられる。

今後本邦でも自己免疫疾患における <u>PCV20 単回接種と PCV15-PPSV23 連続接種</u>のエビデンスの構築が必要である。

【ワクチン予防効果】

自己免疫疾患におけるワクチン接種の効果は、抗体価の上昇や抗体の OPA で評価されることが多く、自己免疫疾患で PPSV23 と PCV13 の臨床的な肺炎球菌性肺炎に対する予防効果を示したランダム化比較試験 (RCT) はみられない。しかし MTX 投与中の RA 患者における長期的な臨床効果を検討した観察研究では、PPSV23 接種群と比較して非接種群では肺炎発症の相対リスクは 9.7 と高かった 35)。またスウェーデンからの観察研究では、RAまたは脊椎関節症患者に PCV7 を接種することで観察期間中の肺炎球菌性肺炎を含む重篤

な感染症の相対リスクが約 45%減少したとしている 36 。 さらに、PCV7 を 1 回だけ接種された RA もしくは乾癬性関節炎患者を 10 年間観察したところ、重篤な肺炎球菌感染症発症の相対リスクは 45%減少し、その有効性は 10 年間変わらなかったとする報告もみられる 37 。

米国の在郷軍人病院での 33,545 人の RA 患者を対象とした後ろ向きコホート研究では、 ワクチン未接種者は疾患コードによる IPD でオッズ比 2.42 倍、微生物検査で確認した IPD でオッズ比 1.64 倍の相関がみられた 38)。同じく 39,243 人の RA 患者において、肺炎球菌 ワクチン受け入れ率は 43.9 %で、人種差や婚姻率、心不全や認知症の有無で差が見られた。 ワクチン非受け入れ患者のうちワクチン未接種者は 32.1%、ワクチン未接種者の 65.3 %は ワクチン非受け入れ患者であり、ワクチンに対する理解と実際のワクチン接種行動の重要 性が示唆された 39)。

今後 PCV15 や PCV20 に関しても自己免疫疾患でのエビデンスが待たれる。

【肺炎球菌ワクチンの接種推奨の要点】

- 1) 免疫抑制薬投与中の 65 歳以下の自己免疫疾患患者に対しては PPSV23 の接種が望ま しい。また、免疫抑制薬投与中の 65 歳以下の自己免疫疾患患者に対しては <u>PCV15-</u> PPSV23 の連続接種も選択肢として考えられる。
- 2) 連続接種の場合の接種間隔は原則 1 年が望ましいが、その感染リスクを考慮して PCV15 接種後 1 年以内の PPSV23 接種を検討することも考えられる。
- 3) 免疫抑制薬が肺炎球菌ワクチンの免疫原性を減弱する可能性に注意が必要である。
- 4) <u>PCV20 の成人への適応が承認されており、免疫抑制薬を使用している自己免疫性疾患</u> 患者への効果が期待される。

引用文献

- Ohta A, et al. Age at onset and gender distribution of systemic lupus erythematosus, polymyositis/dermatomyositis, and systemic sclerosis in Japan. Mod Rheumatol 2013;23(4):759-764. doi: 10.1007/s10165-012-0733-7
- 2. Kojima M, et al. Epidemiological characteristics of rheumatoid arthritis in Japan:

 Prevalence estimates using a nationwide population-based questionnaire survey. Mod

 Rheumatol 2020;30(6):941-947. doi: 10.1080/14397595.2019.1682776
- 3. Kawahito Y, et al. Drug treatment algorithm and recommendations from the 2020 update of the Japan College of Rheumatology clinical practice guidelines for the management of rheumatoid arthritis-secondary publication. Mod Rheumatol 2023;33(1):21-35. doi: 10.1093/mr/roac017
- Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024

- Shigayeva A, et al. Invasive pneumococcal disease among immunocompromised persons: implications for vaccination programs. Clin Infect Dis 2016;62(2):139-147. doi: 10.1093/cid/civ803
- Luijten RK, et al. Serious infections in systemic lupus erythematosus with a focus on pneumococcal infections. Lupus 2014;23(14):1512-1516. doi: 10.1177/0961203314543918
- 7. Furer V, et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2020;79(1):39-52. doi: 10.1136/annrheumdis-2019-215882
- 8. Kivitz AJ, et al. Vaccine responses in patients with rheumatoid arthritis treated with certolizumab pegol: results from a single-blind randomized phase IV trial. J
 Rheumatol 2014;41(4):648-657. doi: 10.3899/jrheum.130945
- 9. Rondaan C, et al. Efficacy, immunogenicity and safety of vaccination in adult patients with autoimmune inflammatory rheumatic diseases: a systematic literature review for the 2019 update of EULAR recommendations. RMD Open 2019;5(2):e001035. doi: 10.1136/rmdopen-2019-001035
- Winthrop KL, et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann Rheum Dis 2016;75(4):687-695. doi: 10.1136/annrheumdis-2014-207191
- 11. Rasmussen SL, *et al.* Antibody response in patients with autoimmune inflammatory rheumatic disease after pneumococcal polysaccharide prime vaccination or revaccination. Scand J Rheumatol 2023;52(2):174-180. doi: 10.1080/03009742.2021.2008602
- Nagra D, et al. No Waning of Pneumococcal Vaccine Responses over Time in People with Inflammatory Arthritis: Findings from a Single Centre Cohort. Vaccines (Basel) 2024;12(1). doi: 10.3390/vaccines12010069
- Nagra D, et al. A Systematic Review and Meta-Analysis of Anti-Rheumatic Drugs and Pneumococcal Vaccine Immunogenicity in Inflammatory Arthritis. Vaccines (Basel) 2023;11(11). doi: 10.3390/vaccines11111680
- 14. Rakoczi E, et al. Evaluation of the immunogenicity of the 13-valent conjugated pneumococcal vaccine in rheumatoid arthritis patients treated with etanercept. Joint Bone Spine 2016;83(6):675-679. doi: 10.1016/j.jbspin.2015.10.017
- 15. Kapetanovic MC, et al. Methotrexate reduces vaccine-specific immunoglobulin levels but not numbers of circulating antibody-producing B cells in rheumatoid arthritis after vaccination with a conjugate pneumococcal vaccine. Vaccine 2017;35(6):903-908. doi: 10.1016/j.vaccine.2016.12.068

- 16. Kapetanovic MC, et al. Antibody response is reduced following vaccination with 7-valent conjugate pneumococcal vaccine in adult methotrexate-treated patients with established arthritis, but not those treated with tumor necrosis factor inhibitors. Arthritis Rheum 2011;63(12):3723-3732. doi: 10.1002/art.30580
- 17. Kapetanovic MC, et al. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res Ther 2013;15(5):R171. doi: 10.1186/ar4358
- 18. Winthrop KL, et al. Evaluation of pneumococcal and tetanus vaccine responses in patients with rheumatoid arthritis receiving baricitinib: results from a long-term extension trial substudy. Arthritis Res Ther 2019;21(1):102. doi: 10.1186/s13075-019-1883-1
- 19. Winthrop KL, et al. T-cell-mediated immune response to pneumococcal conjugate vaccine (PCV-13) and tetanus toxoid vaccine in patients with moderate-to-severe psoriasis during tofacitinib treatment. J Am Acad Dermatol 2018;78(6):1149-1155 e1141. doi: 10.1016/j.jaad.2017.09.076
- 20. Mori S, et al. Impact of Janus kinase inhibitors on antibody response to 13-valent pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Mod Rheumatol 2023;33(2):312-317. doi: 10.1093/mr/roac029
- 21. Winthrop K, *et al.* Evaluation of response to 13-valent conjugated pneumococcal vaccination in patients with rheumatoid arthritis receiving upadacitinib: results from a phase 2 open-label extension study. RMD Open 2022;8(1). doi: 10.1136/rmdopen-2021-002110
- 22. Platt HL, et al. A phase 3 trial of safety, tolerability, and immunogenicity of V114, 15-valent pneumococcal conjugate vaccine, compared with 13-valent pneumococcal conjugate vaccine in adults 50 years of age and older (PNEU-AGE). Vaccine 2022;40(1):162-172. doi: 10.1016/j.vaccine.2021.08.049
- 23. Nguyen MTT, et al. Initial serological response after prime-boost pneumococcal vaccination in rheumatoid arthritis patients: results of a randomized controlled trial. J Rheumatol 2017;44(12):1794-1803. doi: 10.3899/jrheum.161407
- 24. Nived P, et al. Prime-boost vaccination strategy enhances immunogenicity compared to single pneumococcal conjugate vaccination in patients receiving conventional DMARDs, to some extent in abatacept but not in rituximab-treated patients. Arthritis Res Ther 2020;22(1):36. doi: 10.1186/s13075-020-2124-3
- 25. Richi P, et al. Impact of biological therapies on the immune response after pneumococcal vaccination in patients with autoimmune inflammatory diseases. Vaccines (Basel) 2021;9(3). doi: 10.3390/vaccines9030203

- 26. Garcia Garrido HM, et al. Immunogenicity of the 13-Valent Pneumococcal Conjugate Vaccine (PCV13) Followed by the 23-Valent Pneumococcal Polysaccharide Vaccine (PPSV23) in Adults with and without Immunosuppressive Therapy. Vaccines (Basel) 2022;10(5). doi: 10.3390/vaccines10050795
- 27. Rezende RPV, et al. Combined 13-valent pneumococcal conjugate and 23-valent pneumococcal polysaccharide vaccine regimens for adults with systemic lupus erythematosus: Does the sequence of pneumococcal vaccination affect immunogenicity responses? A single-center cohort study in Brazil. Lupus 2023;32(5):694-703. doi: 10.1177/09612033231153535
- 28. Gerard AL, et al. Serum IgG2 levels predict long-term protection following pneumococcal vaccination in systemic lupus erythematosus (SLE). Vaccine 2020;38(44):6859-6863. doi: 10.1016/j.vaccine.2020.08.065
- 29. Bahuaud M, et al. Immunogenicity and persistence of a prime-boost re-vaccination strategy for pneumococcal vaccines in patients with rheumatoid arthritis. Hum Vaccin Immunother 2018;14(6):1464-1470. doi: 10.1080/21645515.2018.1438091
- 30. Kobayashi M, et al. Use of 15-valent pneumococcal conjugate vaccine and 20-valent pneumococcal conjugate vaccine among U.S. adults: updated recommendations of the Advisory Committee on Immunization Practices United States, 2022. MMWR Morb Mortal Wkly Rep 2022;71(4):109-117. doi: 10.15585/mmwr.mm7104a1
- 31. Haranaka M, *et al.* A phase 3 randomized trial of the safety and immunogenicity of 20-valent pneumococcal conjugate vaccine in adults ≥ 60 years of age in Japan, South Korea, and Taiwan. Vaccine 2024;42(5):1071-1077. doi: 10.1016/j.vaccine.2024.01.004
- 32. Essink B, et al. Pivotal Phase 3 Randomized Clinical Trial of the Safety, Tolerability, and Immunogenicity of 20-Valent Pneumococcal Conjugate Vaccine in Adults Aged ≥18 Years. Clin Infect Dis 2022;75(3):390-398. doi: 10.1093/cid/ciab990
- 33. Kobayashi M, *et al.* Expanded recommendations for use of pneumococcal conjugate vaccines among adults aged ≥50 years: Recommendations of the Advisory Committee on Immunization Practices United States, 2024. MMWR Morb Mortal Wkly Rep 2025;74(1):1-8. doi: 10.15585/mmwr.mm7401a1
- 34. Azuma M, et al. Safety and immunogenicity of sequential administration of PCV13 followed by PPSV23 in pneumococcal vaccine-naïve adults aged ≥ 65 years:

 Comparison of booster effects based on intervals of 0.5 and 1.0 year. Vaccine 2023;41(5):1042-1049. doi: 10.1016/j.vaccine.2022.12.060
- 35. Coulson E, et al. Pneumococcal antibody levels after pneumovax in patients with rheumatoid arthritis on methotrexate. Ann Rheum Dis 2011;70(7):1289-1291. doi: 10.1136/ard.2010.144451

- 36. Nagel J, et al. The risk of pneumococcal infections after immunization with pneumococcal conjugate vaccine compared to non-vaccinated inflammatory arthritis patients. Scand J Rheumatol 2015;44(4):271-279. doi: 10.3109/03009742.2014.984754
- 37. Nagel J, et al. Reduced risk of serious pneumococcal infections up to 10 years after a dose of pneumococcal conjugate vaccine in established arthritis. Vaccine 2023;41(2):504-510. doi: 10.1016/j.vaccine.2022.11.075
- 38. Alvarez CA, et al. Impact of PCV13 and PPSV23 Vaccination on Invasive
 Pneumococcal Disease in Adults with Treated Rheumatoid Arthritis: A Population-Based Study. Microorganisms 2024;12(10). doi: 10.3390/microorganisms12102073
- 39. Alvarez CA, et al. Compliance with recommended pneumococcal vaccination schedule in patients treated for rheumatoid arthritis: A retrospective cohort study in the Veterans Affairs population. Vaccine 2024;42(3):489-495. doi: 10.1016/j.vaccine.2023.12.075

9. 悪性腫瘍・臓器移植後

【病態の特徴】

抗がん治療の進歩に伴い、従来の殺細胞性化学療法に伴う免疫不全に加え、ワクチン効果に大きな影響を与え得る分子標的薬も日常的に使用されている。消化器がんを中心とした腹腔内のがんでは手術の際に脾摘を行うこともある。骨髄増殖性疾患やリンパ系悪性腫瘍では疾患そのものによる液性免疫不全に加え、脾摘や脾照射を行う場合もあり高度の液性免疫不全をきたしうる。造血幹細胞移植後は液性免疫の回復に最低でも1~2年程度を要するとされるが、自家造血幹細胞移植後中央値7年の患者56例全例で肺炎球菌に対する抗体価が不十分であったとの報告もある10。固形臓器移植では移植後の免疫抑制薬の長期使用が肺炎球菌感染症の主なリスクとなる。

【肺炎球菌感染症の発生頻度と予後】

小児への PCV 接種導入により成人の悪性腫瘍患者でも侵襲性肺炎球菌感染症(IPD)が減少したが 2)、悪性腫瘍患者や移植患者は IPD の罹患リスクや致死率が高いことが知られている 3)。デンマークの大規模データベース研究報告では非悪性腫瘍患者と比較した IPD のリスク比は固形腫瘍患者で 1.78(95%信頼区間(CI)1.70-1.87)、血液腫瘍患者で 9.53(95%CI 8.85-10.27)と高く、なかでも多発性骨髄腫や急性リンパ芽球性白血病などのリンパ系腫瘍ではリスク比は 35 を超えると報告された 4)。また、肺炎球菌肺炎は血液腫瘍患者における市中肺炎の 9%を占め、重症化リスク因子である (オッズ比 (OR) 10.24 [95%CI

3.48-30.1]) ことがオランダから報告されている 5。その一方で、IPD の致命率は血液腫瘍より固形腫瘍の方が高いとする報告も複数ある 3,4。IPD の罹患リスクは悪性腫瘍診断後や移植後 2 年以内が最も高いが、多発性骨髄腫や非ホジキンリンパ腫、慢性リンパ性白血病のように診断後 10 年を経過しても一般人口に比べたリスク比が 10 前後と高い疾患もある 4)。

国内のデータベース研究では、64 歳以下でも $19\sim49$ 歳の若年悪性腫瘍患者における<u>肺</u> 炎球菌肺炎の罹患リスクが健常人と比較して特に高いこと(ハザード比(HR) 8.32 [2.23-31.1]など)が示されている 6.7。また、 $55\sim64$ 歳の IPD 罹患患者の 26.6%が悪性腫瘍を基礎疾患としており、抗がん剤治療による免疫不全が IPD における死亡のリスク因子(HR 2.4 [95%CI 1.0-5.2])との報告もある 8。造血幹細胞移植患者では移植後数年経過していても発症後 1 週間以内に死亡するような IPD を合併し得る 9。このように、悪性腫瘍患者、移植後患者では 65 歳未満であっても予防対策が重要となる。

【肺炎球菌ワクチンの免疫原性】

悪性腫瘍患者や移植後患者におけるワクチン効果に関する研究の多くはワクチン接種後の血清免疫応答で評価されている。血液腫瘍でも多発性骨髄腫や悪性リンパ腫などである一定の有効抗体獲得効果が報告されているが、慢性リンパ性白血病では PPSV23 の有効抗体獲得率は著しく低い 10·12)。慢性リンパ性白血病や造血幹細胞移植後、固形臓器移植後患者では、PCV の方が PPSV23 より免疫原性において優れることが示されている 13·15)。固形臓器移植患者を対象とした血清免疫応答の研究のシステマティックレビューでは PPSV23と PCV7を合わせて 83% (95%CI 83·93%、№ 81%)の効果が示されたが、高い不均一性を示しており効果が過大評価されている可能性がある 16)。

【肺炎球菌ワクチンの予防効果】

診断後 5 年以上生存した 75 歳以上の悪性腫瘍患者を対象とした研究では、PPSV23 接種は肺炎による入院事例の有意な減少と関連していた(調整罹患率比(IRR) 0.695 [95%CI 0.501-0.965])が、全生存時間は同程度であった 17)。 75 歳以上の前立腺癌や大腸癌、肺癌患者を対象とした検討では、PPSV23 接種は肺炎関連入院に加え全生存率の有意な減少と関連していた 18, 19)。 ただし、これらの PPSV23 研究は RCT ではなく、いずれも台湾におけるデータベース研究である点に注意が必要である。

血液腫瘍患者において治療開始前の PCV13 接種が肺炎や敗血症による入院の有意な減少と関連していたというイスラエルの報告がある (OR 0.45 [95%CI 0.246-0.839]) ²⁰⁾。また、造血幹細胞移植後患者において、PPSV23 のみから PCV と PPSV23 の連続接種に推奨を変更したところ IPD が約 10 分の 1 に減少したというオーストラリアの報告がある ²¹⁾。

【接種スケジュール】

PCV15/20 が 2021 年に承認された米国では、PCV15/20 は PCV13 と比較した免疫原性 や安全性の非劣性かつカバーする血清型の範囲を広げる可能性が示されたとして、65 歳以上のすべての成人および 19~64 歳の特定の基礎疾患もしくはリスク因子をもつ成人において PCV20 単回接種もしくは PCV15・PPSV23 の連続接種が推奨されている ²²⁾。 国内では 2022 年に PCV15 が、2024 年に PCV20 が国内で承認され、本合同委員会で公表した「65 歳以上の成人に対する肺炎球菌ワクチン接種に関する考え方 第 6 版」で、PCV13、PCV15、PCV20 は安全性、免疫原性に大きな違いはないものの、血清型カバー率において、PCV20 は PCV13 及び PCV15 より優れていると考えられ、米国と同様の接種が推奨されている。PCV15/20 において、悪性腫瘍患者や固形臓器移植を対象とした比較研究はないが、同種造血幹細胞移植患者を対象とした PCV13 と PCV15 を比較したランダム化比較試験では、共通の血清型では同等の免疫原性、22F と 23F では PCV15 接種群の免疫原性が高いことが示された ²³⁾。以上を踏まえて悪性腫瘍・臓器移植後患者のワクチンスケジュールについて記載する。

1) 悪性腫瘍・固形臓器移植

米国 CDC では、悪性腫瘍や固形臓器移植患者を含む免疫不全の患者(19~64 歳)への 肺炎球菌ワクチンの推奨として以下の表 4 のとおり推奨している ²²⁾。The National Comprehensive Cancer Network (NCCN) ²⁴⁾ や米国臨床腫瘍学会 (ASCO) のガイドラ イン ²⁵⁾でも同様の推奨としている。

リツキシマブなどの抗 B 細胞抗体治療を行なった場合には、投与から 6 か月以内ではインフルエンザワクチンや肺炎球菌ワクチンなどの不活化ワクチンの効果が著しく低いことが知られており、抗 B 細胞抗体治療後 6<u>~12</u> か月以内の投与は推奨されない。

表 4 特定の免疫抑制状態にある 19-64 歳の成人に対する米国 Advisory Committee on Immunization Practices の推奨 (2023 年) ²²⁾

以前のワクチン接	Option A	Option B
種	(PCV20 が使用できる場合)	(PCV15 と PPSV23 が使用できる場合)
なし、不明もしく	PCV20 単回接種	PCV15 単回接種後 8 週間以上の間隔で
は PCV7 のみ		PPSV23 単回接種
PPSV23 のみ	最後の PPSV23 接種後 1 年以上の間	最後の PPSV23 接種後 1 年以上の間隔で
	隔で PCV20 単回接種	PCV15 単回接種
PCV13 のみ	最後の PCV13 接種後 1 年以上の間	最後の PCV13 接種後 8 週間以上の間隔で
	隔で PCV20 単回接種	PPSV23 単回接種
		最後の PPSV23 接種後 5 年以上の間隔で 2
		回目の PPSV23 接種
		65 歳以上となった時点で肺炎球菌ワクチ
		ンの推奨を見直す
PCV13 と	最後の PCV13 もしくは PPSV23 接	最後の PCV13 接種後 8 週間以上の間隔で
PPSV23 単回	種後 5 年以上の間隔で PCV20 単回	PPSV23 単回接種
	接種	最後の PPSV23 接種後 5 年以上の間隔で
		PPSV23 接種
		65 歳以上となった時点で肺炎球菌ワクチ
		ンの推奨を見直す
PCV13 と	最後の PCV13 もしくは PPSV23 接	65 歳以上となった時点で肺炎球菌ワクチ
PPSV23 2 回	種後 5 年以上の間隔で PCV20 単回	ンの推奨を見直す
	接種	

2) 造血幹細胞移植

造血幹細胞移植後の成人ではワクチン非接種者として小児期のワクチンを接種し直すことが推奨されており、小児と同様に PCV の 3 回接種が推奨され、その後にカバーする血清型の範囲を広げる目的で PPSV23 の接種が推奨されてきた 26)。国内で PCV13 の 3 回接種と4回接種のランダム化比較試験 (RCT) も行われたが同等の免疫原性であった 27)。PCV13接種開始時期を移植3か月後と9か月後で比較した RCTでは同等の免疫原性であり 15)、移植後3~6か月後にワクチン接種を開始することが可能と考えられている。しかし慢性GVHDやステロイド薬投与が PPSV23接種の効果を減弱させることが知られており、移植1年以降の PPSV23接種時にステロイド薬を要する慢性 GVHD がある場合には PPSV23ではなく PCV を接種することが推奨される。

 1~2 か月としている) ²⁴⁾や ASCO ガイドライン ²⁵⁾も同様の推奨としている。

3) CAR-T 治療 (chimeric antigen receptor) -T 細胞治療

<u>CD19</u> 標的 CAR の場合はさらに長期間ワクチンの効果が得られない可能性がある $^{28)}$ 。エビデンスに乏しく、エキスパートオピニオンに基づくガイドラインとして、 2024 年の米国移植細胞治療学会のガイドラインでは、治療 6 カ月以降に 6 カ月以降に 6 カ月以降に 6 か月間隔)を推奨している。しかし、接種 6 か月後の抗体価測定で 6 切抗体価を獲得できていれば、それ以降の接種は不要としている 6 (国内では研究目的以外での抗体価測定は困難)。

悪性腫瘍患者など免疫不全者における肺炎球菌ワクチン接種率は低い 4 。国内でのアンケート研究でも慢性肺疾患や糖尿病、慢性心疾患などと比較すると悪性腫瘍患者の PPSV23 接種率は低い傾向が示されているが、医師からの推奨が接種に有意に関連する因子 (調整 OR $50\sim59$ 歳: 126.68、 $60\sim64$ 歳: 23.48、65 歳以上: 4.09)として抽出されている 30 。海外でも同様の報告があり、医師からの適切な情報提供や接種推奨が重要と考えられる。

【肺炎球菌ワクチンの接種推奨の要点】

- 1) 悪性腫瘍患者、固形臓器移植後患者には <u>PCV20 の単回接種もしくは PCV15-PPSV23</u> <u>の連続接種</u>が推奨される。後者の場合、接種間隔は少なくとも 8 週間あける <u>(過去に肺</u> 炎球菌ワクチン接種歴がある場合は表 4 を参照) ^{22,25}。
- 2) 造血幹細胞移植後 3~6 か月で PCV20 接種を開始し、1~2 か月間隔で3回接種することが推奨される。加えて最後の PCV20 接種から6 か月もしくは移植後1年以降に4回目の PCV20 の接種が推奨される。 もしくは造血幹細胞移植後3~6 か月で PCV15 接種を開始し、1~2 か月間隔で3回接種することが推奨される。加えて最後の PCV15 接種から6 か月もしくは移植後1年以降に PPSV23の接種が推奨されるが、この時に慢性 GVHD を合併している場合には PPSV23 の代わりに PCV15 を用いる 22,25)。
- 3) <u>CAR-T 治療後 6 か月以降に 1~2 か月間隔で PCV20 の 3 回接種を行うことが米国移植細胞治療学会で推奨されているが、今後の各種ガイドライン等も参考に接種スケジュールを検討する 29)</u>。
- 4) 抗B細胞抗体治療後6~12か月以内のワクチン接種は推奨しない31,320。

引用文献

 Colton H, et al. Long-term survivors following autologous haematopoetic stem cell transplantation have significant defects in their humoral immunity against vaccine preventable diseases, years on from transplant. Vaccine 2021;39(34):4778-4783. doi: 10.1016/j.vaccine.2021.07.022

- 2. Lee YJ, et al. Trends in invasive pneumococcal disease in cancer patients after the introduction of 7-valent pneumococcal conjugate vaccine: a 20-year longitudinal study at a major urban cancer center. Clin Infect Dis 2018;66(2):244-253. doi: 10.1093/cid/cix739
- 3. Shigayeva A, et al. Invasive Pneumococcal Disease Among Immunocompromised Persons: Implications for Vaccination Programs. Clin Infect Dis 2016;62(2):139-147. doi: 10.1093/cid/civ803
- 4. Andersen MA, et al. Differences and Temporal Changes in Risk of Invasive Pneumococcal Disease in Adults with Hematological Malignancies: Results from a Nationwide 16-Year Cohort Study. Clin Infect Dis 2021;72(3):463-471. doi: 10.1093/cid/ciaa090
- Certan M, et al. Incidence and predictors of community-acquired pneumonia in patients with hematological cancers between 2016 and 2019. Clin Infect Dis 2022;75(6):1046-1053. doi: 10.1093/cid/ciac005
- Imai K, et al. Risk of pneumococcal diseases in adults with underlying medical conditions: a retrospective, cohort study using two Japanese healthcare databases. BMJ Open 2018;8(3):e018553. doi: 10.1136/bmjopen-2017-018553
- 7. Fukuda H, et al. Risk factors for pneumococcal disease in persons with chronic medical conditions: Results from the LIFE Study. Int J Infect Dis 2022;116:216-222. doi: 10.1016/j.ijid.2021.12.365
- 8. Hanada S, *et al.* Multiple comorbidities increase the risk of death from invasive pneumococcal disease under the age of 65 years. J Infect Chemother 2021;27(9):1311-1318. doi: 10.1016/j.jiac.2021.04.018
- Okinaka K, et al. Clinical characteristics and risk factors of pneumococcal diseases in recipients of allogeneic hematopoietic stem cell transplants in the late phase: A retrospective registry study. J Infect Chemother 2023;29(7):726-730. doi: 10.1016/j.jiac.2023.04.015
- Lindström V, et al. Antibody response to the 23-valent pneumococcal polysaccharide vaccine after conjugate vaccine in patients with chronic lymphocytic leukemia. Hum Vaccin Immunother 2019;15(12):2910-2913. doi: 10.1080/21645515.2019.1627160
- 11. Sinisalo M, *et al.* Response to vaccination against different types of antigens in patients with chronic lymphocytic leukaemia. Br J Haematol 2001;114(1):107-110. doi: 10.1046/j.1365-2141.2001.02882.x
- Hartkamp A, et al. Antibody responses to pneumococcal and haemophilus vaccinations in patients with B-cell chronic lymphocytic leukaemia. Vaccine 2001;19(13-14):1671-1677. doi: 10.1016/s0264-410x(00)00409-6

- 13. Svensson T, et al. Pneumococcal conjugate vaccine triggers a better immune response than pneumococcal polysaccharide vaccine in patients with chronic lymphocytic leukemia A randomized study by the Swedish CLL group. Vaccine 2018;36(25):3701-3707. doi: 10.1016/j.vaccine.2018.05.012
- 14. Takeshita K, et al. Immunogenicity and safety of routine 13-valent pneumococcal conjugate vaccination outside recommended age range in patients with hematological malignancies and solid tumors. Vaccine 2022;40(9):1238-1245. doi: 10.1016/j.vaccine.2022.01.056
- Cordonnier C, et al. Randomized study of early versus late immunization with pneumococcal conjugate vaccine after allogeneic stem cell transplantation. Clin Infect Dis 2009;48(10):1392-1401. doi: 10.1086/598324
- 16. Eckerle I, et al. Serologic vaccination response after solid organ transplantation: a systematic review. PLoS One 2013;8(2):e56974. doi: 10.1371/journal.pone.0056974
- 17. Chiou WY, et al. Effectiveness of 23-valent pneumococcal polysaccharide vaccine on elderly long-term cancer survivors: a population-based propensity score matched cohort study. BMJ Open 2018;8(5):e019364. doi: 10.1136/bmjopen-2017-019364
- 18. Li CY, et al. Impact of 23-valent pneumococcal polysaccharide vaccination on the frequency of pneumonia-related hospitalization and survival in elderly patients with prostate cancer: A seven-year nationwide matched cohort study. Cancer 2021;127(1):124-136. doi: 10.1002/cncr.33203
- 19. Chiou WY, et al. Effectiveness of 23-valent pneumococcal polysaccharide vaccine on elderly patients with colorectal cancer: A population-based propensity score-matched cohort study. Medicine (Baltimore) 2019;98(50):e18380. doi: 10.1097/md.000000000018380
- 20. Draliuk R, et al. Association between PCV13 pneumococcal vaccination and risk of hospital admissions due to pneumonia or sepsis among patients with haematological malignancies: a single-centre retrospective cohort study in Israel. BMJ Open 2022;12(4):e056986. doi: 10.1136/bmjopen-2021-056986
- 21. Roberts MB, *et al.* Clinical Effectiveness of Conjugate Pneumococcal Vaccination in Hematopoietic Stem Cell Transplantation Recipients. Biol Blood Marrow Transplant 2019. doi: 10.1016/j.bbmt.2019.10.006
- 22. Kobayashi M, et al. Pneumococcal vaccine for adults aged ≥19 years: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023;72(3):1-39. doi: 10.15585/mmwr.rr7203a1
- 23. Wilck M, et al. A Phase 3, Randomized, Double-Blind, Comparator-Controlled Study to Evaluate Safety, Tolerability, and Immunogenicity of V114, a 15-Valent Pneumococcal

- Conjugate Vaccine, in Allogeneic Hematopoietic Cell Transplant Recipients (PNEU-STEM). Clin Infect Dis 2023;77(8):1102-1110. doi: 10.1093/cid/ciad349
- 24. (NCCN) TNCCN. NCCN Guidelines: Prevention and Treatment of Cancer-Related Infections. https://www.nccn.org/guidelines/guidelines-detail?category=3&id=1457. Accessed Jan 31, 2025.
- 25. Kamboj M, et al. Vaccination of adults with cancer: ASCO guideline. J Clin Oncol 2024;42(14):1699-1721. doi: 10.1200/jco.24.00032
- 26. Rubin LG, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):309-318. doi: 10.1093/cid/cit816
- 27. Okinaka K, et al. Immunogenicity of three versus four doses of 13-valent pneumococcal conjugate vaccine followed by 23-valent pneumococcal polysaccharide vaccine in allogeneic haematopoietic stem cell transplantation recipients: a multicentre, randomized controlled trial. Clin Microbiol Infect 2023;29(4):482-489. doi: 10.1016/j.cmi.2022.12.007
- 28. Lee D, et al. Pneumococcal conjugate vaccine does not induce humoral response when administrated within the six months after CD19 CAR T-cell therapy. Transplant Cell Ther 2023;29(4):277.e271-277.e279. doi: 10.1016/j.jtct.2022.08.011
- 29. Shahid Z, et al. Best practice considerations by The American Society of Transplant and Cellular Therapy: Infection prevention and management after chimeric antigen receptor t cell therapy for hematological malignancies. Transplant Cell Ther 2024;30(10):955-969. doi: 10.1016/j.jtct.2024.07.018
- 30. Kawakami K, et al. A Japanese nationwide survey of 23-valent pneumococcal capsular polysaccharide vaccine (PPSV23) coverage among patients with chronic medical condition aged 50 and older. Hum Vaccin Immunother 2020;16(7):1521-1528. doi: 10.1080/21645515.2019.1690332
- 31. Mikulska M, et al. Vaccination of patients with haematological malignancies who did not have transplantations: guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis 2019;19(6):e188-e199. doi: 10.1016/S1473-3099(18)30601-7
- 32. Rubin LG, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014;58(3):e44-100. doi: 10.1093/cid/cit684

10. 免疫不全(主に小児)

【肺炎球菌感染症が重症化しやすい基礎疾患】

肺炎球菌感染症が重症化しやすい基礎疾患としては、まず機能的/解剖学的無脾症があげられる。無脾症患者は細菌の濾過機能と好中球の貪食機能が低下するため、先天的な無脾症や鎌状赤血球症のほか、脾臓摘出術を受けた者も含めて肺炎球菌感染症が重症化しやすい。慢性髄液漏を伴う者や人工内耳装用者も肺炎球菌性髄膜炎のリスク因子となる。また、補体欠損症など原発性免疫不全症も重症化しやすい基礎疾患としてあげられる。原発性免疫不全症の中には、肺炎球菌感染症に対して特異的に易感染性が認められる自然免疫系の異常であるIRAK-4欠損症なども見つかっている。このほか、HIV感染、悪性疾患、循環器・呼吸器の慢性疾患、腎不全、肝機能障害、糖尿病や、免疫抑制化学療法を受けている者、臓器移植、骨髄移植を受けたことのある者も肺炎球菌感染症のハイリスク者である。

米国の2007~2009年PCV13導入前の小児侵襲性肺炎球菌感染症(IPD)サーベイランスデータによると、6~18歳の小児例において、IPDの49%がPCV13含有血清型、23%がPPSV23含有血清型(PCV13含有血清型を除く)であり、血液悪性疾患、HIV/AIDS、鎌状赤血球症の健常児に対するリスク比は、それぞれ822、122、27とされる 11 。また、マサチューセッツ州からの2002年~2014年の小児IPDのサーベイランス報告によると18歳未満の症例の中で、22.1%が基礎疾患を有しており、最も多かったのが免疫不全状態(32.7%)、慢性呼吸器疾患(22.4%)であった 21 。

英国からの2006~2014年の報告では、PCV7/PCV13血清型の小児IPDの22%に基礎疾患があり、悪性疾患、免疫不全状態が主体であったとされる³⁾。また、カナダからの2009~2018年(10年間)のハイリスク小児IPD 94症例に関する後方視的検討によると、IPD罹患者の基礎疾患は、悪性疾患、臓器・骨髄移植患者、鎌状赤血球症の順であり、34%の症例が免疫抑制薬を使用していた⁴⁾。

一方、国内では2014~2021年における全国10道県の小児侵襲性肺炎球菌感染症サーベイランス調査(AMED「菅班」)において、6歳以上15歳以下の症例は89人あり、そのうち、38人(42.7%)が肺炎球菌感染症のリスク因子となる基礎疾患を有していたり(表2)。また、これまでの国内での小児の肺炎球菌感染症報告例をまとめたレビュー論文によると、小児IPDでは、慢性心疾患、慢性肺疾患、慢性腎疾患、髄液漏、無脾症、ダウン症候群、早産低出生体重児、悪性疾患がリスク因子となっていたの。

【肺炎球菌ワクチンの免疫原性】

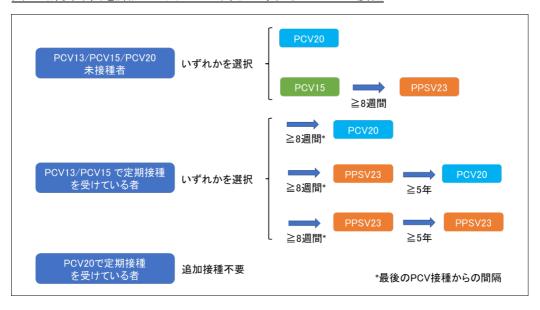
PPSV23はB細胞の発達が未熟な2歳未満の乳幼児では十分な免疫が誘導できず予防効果は得られない。一方、PCV15/PCV20は、T細胞依存性抗原であるジフテリア変異蛋白を結合させたことによって、乳児(日本では生後2か月から接種)にもB細胞とT細胞の相互作用により優れた免疫応答を誘導できるとともに、メモリーB細胞を誘導出来るため、複数回接種によるブースター効果も期待できるワクチンである。

実際、国内で小児を含む血液腫瘍疾患・骨髄移植後患者に対するPCV13接種前後での免疫原性について検討した報告によると、PCV13接種後、血清型 1、3、5、6A、7F、19Aに対するOPAの上昇と血清型3に対するメモリーB細胞数の上昇が確認されているっ。無脾症・脾臓摘出患者に対する肺炎球菌ワクチンの免疫原性に関しては、無脾症・脾臓摘出患者のPCV7接種による抗体価上昇は良好であり、PPSV23単回接種は抗体保持が不十分で、PCV7+PPSV23の方がより抗体獲得率が高いとされる8·10)。慢性髄液漏を伴う者や人工内耳装用者は、基礎疾患として免疫不全症がない場合には、肺炎球菌ワクチンに対する免疫原性は健常者と変わらない。原発性免疫不全症患者においては、肺炎球菌ワクチンに対する免疫原性は低下することが予想されるが、不活化ワクチンは合併症への危険性はないので、有効性があると考えられる疾患(補体欠損症、IgGサブクラス欠損症、IRAK-4欠損症など)に対しては、積極的に接種を行うことが推奨される11)。なお、いずれの疾患においても長期的な免疫原性については明らかになっていない。

PCV15については、小児の鎌状赤血球症(5歳~17歳、PCV13/PCV15 単回接種)、HIV感染症患者(6~17歳、PCV13/PCV15単回接種8週間後、PPSV23接種)、同種造血 幹細胞移植を受けた患者(小児患者は3歳以上18歳未満、PCV13/PCV15 3回接種、移植1 年後にPPSV23あるいはPCV13/PCV15 1回接種)を対象としたPCV15とPCV13の免疫原性と安全性について比較検討した第Ⅲ相多施設プラセボ対照二重盲検比較試験において、両群とも安全性に問題はなく、免疫原性に関しては、PCV15はPCV13に対して、共通する13血清型については非劣性を示した12·14。一方、PCV15はPCV13に対し、22F、33Fの2 血清型に関して優位性を示したと報告されている12·14。また、海外の第Ⅲ相試験において、7か月~17歳の未接種あるいは価数の少ないPCV既接種者に対しPCV15によるキャッチアップ接種を行った結果、PCV13と比較し良好な免疫原性が認められたと報告されている15。

PCV20については、18歳未満のハイリスク小児を対象とした臨床試験は実施されていないものの、2~6か月齢の健康小児を対象とした国内第Ⅲ相試験、生後15か月以上18歳未満の健康小児を対象とした海外第Ⅲ相試験および6~64歳のハイリスク者を対象としたPCV13の国内第Ⅲ相試験の成績から、18歳未満のハイリスク小児についても、13共通血清型による肺炎球菌感染症に対してPCV13と同程度の予防効果が期待され、7追加血清型による肺炎球菌感染症に対する予防にも寄与できると評価されている16。

【ワクチン予防効果】


ハイリスク小児に対するワクチンの予防効果に関して、米国の8つの小児病院からの報告によると、PCV13導入後、2014~2017年の小児IPD患者495人のうち、227人に基礎疾患が認められ、PCV13含有血清型による感染症は全体の23.5%を占めていた。基礎疾患を有する小児では、有意に非PCV13血清型による感染症が多かったとされる17。また、同じ8つの小児病院の移植患者のIPD罹患状況に関する調査(2000~2014年)結果報告による

と、IPD患者に占める移植患者の割合は増加しており、ワクチン接種歴の明らかなIPD患者61人中、1回以上PCV接種を受けていた者は30人、そのうち3回以上受けていた人は20人とワクチン接種が不十分であったとされる¹⁸。

【接種スケジュール】

米国CDCは、機能的または解剖学的無脾症、髄液漏、人工内耳、原発性免疫不全症、HIV感染症、慢性肺疾患、慢性心疾患、慢性腎疾患、慢性肝疾患、糖尿病、ネフローゼ症候群、骨髄移植後、臓器移植後、その他の免疫不全状態の、6歳以上のPCV13/PCV15/PCV20未接種者に対して、①PCV20を1回接種すること、あるいは、②PCV15を接種しその後8週間以上の間隔を空けて、PPSV23接種することを推奨している。また、6歳以前にPCV13/PCV15接種歴があるが、PPSV23未接種の場合は、最後のPCV接種から8週間以上空けて、PCV20あるいはPPSV23を1回接種する。PPSV23を選択した場合には、5年以上空けて、PCV20あるいはPPSV23の接種を1回行う、PPSV23既接種の場合は、5年以上空けて、PCV20あるいはPPSV23の接種を1回行うことを推奨している(図1)19)。

図1 肺炎球菌感染症ハイリスク小児に対するワクチン接種

造血幹細胞移植を受けた小児患者に対しては、PCV20を移植3~6か月後から4週間隔で3 回接種し、3回目のPCV20接種から6か月以上経過してから、または移植から12か月以上経 過してから、いずれか遅い方で4回目のPCV20接種を行う。PCV20が使用できない場合 は、PCV15を同様のスケジュールで3回接種し、4回目の接種はPCV15あるいはPPSV23で 行うことを推奨している19。

国内でも日本小児科学会はこれまでPCV13未接種の定期接種年齢対象外の肺炎球菌感染

症ハイリスク小児患者に対して同様の接種を推奨してきた。しかしながら、日本小児感染症学会で会員を対象にアンケートを実施したところ、定期接種年齢対象外のハイリスク者に対してPCV13接種を勧めている施設は、無脾症・摘脾・脾機能不全者で69%、血液腫瘍疾患、原発性免疫不全症、臓器移植後患者ではそれぞれ53%、50%、42%と限定的であった20)。そのため、基礎疾患のある小児に対する肺炎球菌ワクチンの予防効果については十分検証できていない。なお、前述した国内10道県における小児IPDサーベイランスでは、2023年の1年間に認められた症例の中で、PCV15含有血清型、PCV20含有血清型はそれぞれIPD症例の10.0%、35.0%を占めていた5。現在、PCV15/PCV20共に、全ての年齢の肺炎球菌感染症ハイリスク者に対して任意接種ワクチンとして接種が可能である。今後、国内において新しく導入されたPCV15/PCV20のハイリスク小児に対する予防効果について検証していくことが必要である。

【肺炎球菌ワクチン推奨の要点】

- 1) 無脾症、慢性髄液漏を伴う者、人工内耳装用者、補体欠損症などの原発性免疫不全、<u>慢性疾患を</u>基礎疾患として有する場合、免疫不全状態の者は、肺炎球菌感染症が重症化しやすい。 PCV15/PCV20の定期接種対象年齢は5歳未満 (長期療養特例対象は6歳未満)であるが、これらの基礎疾患を有する小児<u>や免疫不全状態の小児</u>に対して、PCV13/PCV15/PCV20未接種の場合、6歳以上であってもPCV20の接種あるいはPCV15の接種と接種後8週間以上の間隔をあけてPPSV23の接種を行うことが望ましい。
- 2) PCV13/PCV15 接種歴があるが、PPSV23 未接種の場合は、最後の PCV 接種から 8 週間以上あけて、PCV20 あるいは PPSV23 を 1 回接種する。PPSV23 を選択した場合には、5 年以上あけて、PCV20 あるいは PPSV23 の接種を 1 回行う。PPSV23 既接種の場合は、5 年以上空けて、PCV20 あるいは PPSV23 の接種を 1 回行う。
- 3) 慢性肺疾患、慢性心疾患、慢性腎疾患、慢性肝疾患、糖尿病、自己免疫性疾患、悪性疾患・臓器移植の小児に対する方針は、各項目の方針を参考とする。

引用文献

- CDC. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal
 polysaccharide vaccine among children aged 6-18 years with immunocompromising
 conditions: recommendations of the Advisory Committee on Immunization Practices
 (ACIP). MMWR Morb Mortal Wkly Rep 2013;62(25):521-524. doi:
- 2. Yildirim I, et al. Vaccination, underlying comorbidities, and risk of invasive pneumococcal disease. Pediatrics 2015;135(3):495-503. doi: 10.1542/peds.2014-2426
- 3. Oligbu G, et al. Characteristics and Serotype Distribution of Childhood Cases of Invasive Pneumococcal Disease Following Pneumococcal Conjugate Vaccination in

- England and Wales, 2006-2014. Clin Infect Dis 2017;65(7):1191-1198. doi: 10.1093/cid/cix418
- 4. van Warmerdam J, et al. Invasive Pneumococcal Disease in High-risk Children: A 10-Year Retrospective Study. Pediatr Infect Dis J 2023;42(1):74-81. doi: 10.1097/inf.000000000003748
- 5. 小児・成人の侵襲性肺炎球菌感染症の疫学情報. https://ipd-information.com. Accessed Jan 29, 2025.
- 6. Ishiwada N. Current situation and need for prevention of invasive pneumococcal disease and pneumococcal pneumonia in 6- to 64-year-olds in Japan. J Infect Chemother 2021;27(1):7-18. doi: 10.1016/j.jiac.2020.09.016
- Takeshita K, et al. Immunogenicity and safety of routine 13-valent pneumococcal
 conjugate vaccination outside recommended age range in patients with hematological
 malignancies and solid tumors. Vaccine 2022;40(9):1238-1245. doi:
 10.1016/j.vaccine.2022.01.056
- 8. Mikoluc B, *et al.* Immune response to the 7-valent pneumococcal conjugate vaccine in 30 asplenic children. Eur J Clin Microbiol Infect Dis 2008;27(10):923-928. doi: 10.1007/s10096-008-0523-5
- 9. Smets F, et al. Randomised revaccination with pneumococcal polysaccharide or conjugate vaccine in asplenic children previously vaccinated with polysaccharide vaccine. Vaccine 2007;25(29):5278-5282. doi: 10.1016/j.vaccine.2007.05.014
- Meerveld-Eggink A, et al. Response to conjugate pneumococcal and Haemophilus influenzae type b vaccines in asplenic patients. Vaccine 2011;29(4):675-680. doi: 10.1016/j.vaccine.2010.11.034
- 11. Bonilla FA, *et al.* Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015;136(5):1186-1205 e1181-1178. doi: 10.1016/j.jaci.2015.04.049
- Quinn CT, et al. Safety and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, in children with SCD: a V114-023 (PNEU-SICKLE) study. Blood Adv 2023;7(3):414-421. doi: 10.1182/bloodadvances.2022008037
- 13. Wilck M, et al. A phase 3 study of safety and immunogenicity of V114, a 15-valent PCV, followed by PPSV23, in children living with HIV. Aids 2023;37(8):1227-1237. doi: 10.1097/qad.000000000003551
- 14. Wilck M, et al. A Phase 3, Randomized, Double-Blind, Comparator-Controlled Study to Evaluate Safety, Tolerability, and Immunogenicity of V114, a 15-Valent Pneumococcal Conjugate Vaccine, in Allogeneic Hematopoietic Cell Transplant Recipients (PNEU-STEM). Clin Infect Dis 2023;77(8):1102-1110. doi: 10.1093/cid/ciad349

- 15. Banniettis N, et al. A phase III, multicenter, randomized, double-blind, active comparator-controlled study to evaluate the safety, tolerability, and immunogenicity of catch-up vaccination regimens of V114, a 15-valent pneumococcal conjugate vaccine, in healthy infants, children, and adolescents (PNEU-PLAN). Vaccine 2022;40(44):6315-6325. doi: 10.1016/j.vaccine.2022.09.003
- 16. 独立行政法人医薬品医療機器総合機構. プレベナー20 水性懸濁注 審査報告書.
 https://www.pmda.go.jp/drugs/2024/P20240829003/672212000 30600AMX00115 A100
 2.pdf. Accessed Jan 30, 2025.
- 17. Kaplan SL, *et al.* Invasive pneumococcal disease in children's hospitals: 2014-2017. Pediatrics 2019;144(3). doi: 10.1542/peds.2019-0567
- Olarte L, et al. Invasive pneumococcal infections in children following transplantation in the pneumococcal conjugate vaccine era. Transpl Infect Dis 2017;19(1). doi: 10.1111/tid.12630
- CDC. ACIP Updates: Recommendations for the Use of 20-Valent Pneumococcal Conjugate Vaccine in Children — United States, 2023. https://stacks.cdc.gov/view/cdc/133252. Accessed Jan 31, 2025.
- 20. 竹下健一, et al. ハイリスク小児におけるインフルエンザ菌 b 型ワクチン、肺炎球菌ワクチン接種状況に関するアンケート. 小児感染免疫 2018;30(1):57-62. doi:

おわりに

肺炎球菌性肺炎や IPD のリスクとなる主な基礎疾患ごとに、6 歳~64 歳のハイリスク者に対する肺炎球菌ワクチンの予防効果と推奨の要点を記載した。この他に、神経筋疾患や脳卒中などの神経系疾患でも肺炎球菌感染症が起こりやすいことが海外から報告されておりり、わが国の 6~64 歳の IPD の基礎疾患の検討でも明らかになっている 2。ここに記載した基礎疾患以外でも、患者ごとに肺炎球菌感染症のリスクを評価し、3 種類の肺炎球菌ワクチンの適応を検討することが望まれる。

任意接種である 6 歳から 64 歳までの肺炎球菌ワクチンの適応は、基礎疾患の種類、その重症度、生活環境、患者の価値観などによって異なるため、臨床的共有意思決定(shared clinical decision making) 3,40の考え方に基づいて、患者・保護者と医師のあいだで双方向的・相互作用的に検討する必要がある。今回の「考え方 第 3 版」がその際の参考になれば幸いである。

引用文献

- Shea KM, et al. Rates of pneumococcal disease in adults with chronic medical conditions. Open Forum Infect Dis 2014;1(1):ofu024. doi: 10.1093/ofid/ofu024
- 2. Hanada S, *et al.* Multiple comorbidities increase the risk of death from invasive pneumococcal disease under the age of 65 years. J Infect Chemother 2021;27(9):1311-1318. doi: 10.1016/j.jiac.2021.04.018
- Kobayashi M, et al. Pneumococcal vaccine for adults aged ≥19 years:
 Recommendations of the Advisory Committee on Immunization Practices, United
 States, 2023. MMWR Recomm Rep 2023;72(3):1-39. doi: 10.15585/mmwr.rr7203a1
- 4. 藤本修平,他. 共有意思決定<Shared decision making>とは何か? インフォームドコンセントとの相違. 日本医事新報 2016(4825):20-22

2025年4月9日

日本呼吸器学会感染症・結核学術部会ワクチン WG/日本感染症学会ワクチン委員会/日本ワクチン学会・合同委員会

日本呼吸器学会感染症・結核学術部会ワクチン WG 荒川 悠、大石和徳*、倉井大輔、高橋 洋、永井英明、中村茂樹、長谷川直樹、丸山貴也、 迎 寛、山本和子 *委員長

日本感染症学会ワクチン委員会

岩田 敏、大石和徳、岡田賢治、神谷 元、川名 敬、関 雅文、多屋馨子、永井英明、 中野貴司、西 順一郎*、宮下修行 *委員長

日本ワクチン学会 理事長 中野貴司

執筆協力者

石和田稔彦、冲中敬二、筒井裕之

他学会による査読

日本循環器学会(桑原宏一郎)、日本腎臓学会(斎藤知栄、戸田 晋)、 日本肝臓学会(四柳 宏)、日本糖尿病学会(戸邉一之)、日本リウマチ学会(奥 健志)